I am training a model to classify images into 2 classes following this tutorial: https://www.tensorflow.org/tutorials/images/classification
After model.fit()
, I want to evaluate the accuracy of the model's prediction using a test set which contains images that weren't included in the training or validation sets. The test set contains 2 folders which contain the images of the corresponding class.
├── test_data/
│ ├── class1/
│ ├── class2/
And I want to find the recall, precision and accuracy of each class using confusion matrix. However, I am new to deep learning and Tensorflow. I have no idea how to get the confusion matrix for each class. I am also not sure whether the way I pass images to the model is correct.
The following is my current implementation on using the model to predict on new data.
# get the list of class names in the training set
train_class_names = train_ds.class_names
# load the test data
test_data_dir = pathlib.Path('test_data/')
test_data_list = list(test_data_dir.glob('*/*.jpg'))
test_ds = tf.keras.utils.image_dataset_from_directory(
test_data_dir,
image_size=(img_height, img_width),
batch_size=batch_size)
predicted_img = []
# for every image in the test_data folder, pass it to the model to predict its class
for path in test_data_list:
img = tf.keras.utils.load_img(
path, target_size=(img_height, img_width)
)
img_array = tf.keras.utils.img_to_array(img)
img_array = tf.expand_dims(img_array, 0)
test_class_name = path.parent.name
predictions = model.predict(img_array)
score = tf.nn.softmax(predictions[0])
# append the image, predicted class and actual class to a list
# so that I can print them out to see if the prediction is correct
predicted_img.append([img, train_class_names[np.argmax(score)], test_class_name])
try this
from sklearn.metrics import confusion_matrix, classification_report
import seaborn as sns
sns.set_style('darkgrid')
classes=test_ds.class_names # ordered list of class names
ytrue=[]
for images, label in test_ds:
for e in label:
ytrue.append(classes[e]) # list of class names associated with each image file in test dataset
ypred=[]
errors=0
count=0
preds=model.predict(test_ds, verbose=1) # predict on the test data
for i, p in enumerate(preds):
count +=1
index=np.argmax(p) # get index of prediction with highest probability
klass=classes
[index]
ypred.append(klass)
if klass != ytrue[i]:
errors +=1
acc= (count-errors)* 100/count
msg=f'there were {count-errors} correct predictions in {count} tests for an accuracy of {acc:6.2f} % '
print(msg)
ypred=np.array(ypred)
ytrue=np.array(ytrue)
if len(classes)<= 30: # if more than 30 classes plot is not useful to cramed
# create a confusion matrix
cm = confusion_matrix(y_true, y_pred )
length=len(classes)
if length<8:
fig_width=8
fig_height=8
else:
fig_width= int(length * .5)
fig_height= int(length * .5)
plt.figure(figsize=(fig_width, fig_height))
sns.heatmap(cm, annot=True, vmin=0, fmt='g', cmap='Blues', cbar=False)
plt.xticks(np.arange(length)+.5, classes, rotation= 90)
plt.yticks(np.arange(length)+.5, classes, rotation=0)
plt.xlabel("Predicted")
plt.ylabel("Actual")
plt.title("Confusion Matrix")
plt.show()
clr = classification_report(ytrue, ypred, target_names=class_names)
print("Classification Report:\n----------------------\n", clr)