I have a numpy array of the shape arr.shape = N,M,M.
I want to access the lower triangles for each M,M array. I tried using
arr1 = arr[:,np.tril_indices(M,-1)]
arr1 = arr[:][np.tril_indices(M,-1)]
etc, with the kernel dying in the first case, while in the second case I get an error saying that:
---------------------------------------------------------------------------
IndexError Traceback (most recent call last)
<ipython-input-23-1b36c5b12706> in <module>
----> 1 arr1 = arr[:][np.tril_indices(M,-1)]
IndexError: index 6 is out of bounds for axis 0 with size 6
Where
N=6
To clarify I want to find all the elements in the lower triangle of each M,M array(N such instances) and save the result in a new array of the shape:
arr1.shape = (N,(M*(M-1))/2)
Edit:
While np.tril(arr) works, it results in an array
arr1 = np.tril(arr)
arr1.shape
#(N,M,M)
I want the resulting array to be of the specified shape, i.e. I dont want the upper parts of the arrays
Thank you
When working with the tri...
set of functions it can be useful to examine the source code. They are all python, and based on np.tri
.
Make a small sample array - to illustrate and verify the answer:
In [205]: arr = np.arange(18).reshape(2,3,3) # arange(1,19) might be better
In [206]: arr
Out[206]:
array([[[ 0, 1, 2],
[ 3, 4, 5],
[ 6, 7, 8]],
[[ 9, 10, 11],
[12, 13, 14],
[15, 16, 17]]])
tril
sets the upper triangle values to 0. It works in this case, but application to 3d arrays is not documented.
In [207]: np.tril(arr)
Out[207]:
array([[[ 0, 0, 0],
[ 3, 4, 0],
[ 6, 7, 8]],
[[ 9, 0, 0],
[12, 13, 0],
[15, 16, 17]]])
But in the code if first constructs a boolean mask from the last 2 dimensions:
In [208]: mask = np.tri(*arr.shape[-2:], dtype=bool)
In [209]: mask
Out[209]:
array([[ True, False, False],
[ True, True, False],
[ True, True, True]])
and uses np.where
to set some values to 0. This works in the 3d case by broadcasting. mask
and arr
match on the last 2 dimensions, so mask
can broadcast
to match:
In [210]: np.where(mask, arr, 0)
Out[210]:
array([[[ 0, 0, 0],
[ 3, 4, 0],
[ 6, 7, 8]],
[[ 9, 0, 0],
[12, 13, 0],
[15, 16, 17]]])
Your tril_indices
is just the indices of this mask:
In [217]: np.nonzero(mask) # aka np.where
Out[217]: (array([0, 1, 1, 2, 2, 2]), array([0, 0, 1, 0, 1, 2]))
In [218]: np.tril_indices(3)
Out[218]: (array([0, 1, 1, 2, 2, 2]), array([0, 0, 1, 0, 1, 2]))
They can't be used directly to index arr
:
In [220]: arr[np.tril_indices(3)].shape
Traceback (most recent call last):
File "<ipython-input-220-e26dc1f514cc>", line 1, in <module>
arr[np.tril_indices(3)].shape
IndexError: index 2 is out of bounds for axis 0 with size 2
In [221]: arr[:,np.tril_indices(3)].shape
Out[221]: (2, 2, 6, 3)
But unpacking the two indexing arrays:
In [222]: I,J = np.tril_indices(3)
In [223]: I,J
Out[223]: (array([0, 1, 1, 2, 2, 2]), array([0, 0, 1, 0, 1, 2]))
In [224]: arr[:,I,J]
Out[224]:
array([[ 0, 3, 4, 6, 7, 8],
[ 9, 12, 13, 15, 16, 17]])
The boolean mask can also be used directly:
In [226]: arr[:,mask]
Out[226]:
array([[ 0, 3, 4, 6, 7, 8],
[ 9, 12, 13, 15, 16, 17]])
The base np.tri
works by simply doing an outer >= on indices
In [231]: m = np.greater_equal.outer(np.arange(3),np.arange(3))
In [232]: m
Out[232]:
array([[ True, False, False],
[ True, True, False],
[ True, True, True]])
In [234]: np.arange(3)[:,None]>=np.arange(3)
Out[234]:
array([[ True, False, False],
[ True, True, False],
[ True, True, True]])