I want to build confidence intervals around a large set of fitted values using predictNLS from the propogate package in R. As an example, I will use the data set they reference in the function description (https://rdrr.io/github/anspiess/propagate/man/predictNLS.html), DNase, and building a model that takes the values conc and density as features:
library(propogate)
library(dplyr)
library(modelr)
DNase <- DNase
modeldna <- DNase %>% group_by(Run) %>%
do(run_model = nls(density ~ a * exp(b * conc),
start = list(a = 1 , b = 0.5),
data = .)) %>% ungroup()
I then want to give each row the model that it is assigned to so that predictions can be added:
DNApredict <- full_join(as_tibble(DNase), modeldna, by = "Run")
Add in the predictions:
DNApredict <- DNApredict %>%
group_by(Run) %>%
do(add_predictions(., var = "predicted_density", first(.$run_model)))
And then, I want to add the confidence interval data that predictNLS seems to provide, by giving it that same data and asking it to give a confidence interval for each fitted point in the predicted_density column:
confidence_interval <- predictNLS(model = modeldna, newdata = DNApredict$predicted_density, interval = "confidence")
However, the following error arises:
Error in as.list(object$call$formula) : argument "object" is missing, with no default
Does anyone know what might be causing this? I know that it will likely seem obvious to some of you what the object it is calling is, so I apologize if this is a ridiculous question. I am really hoping to be able to use this function to create confidence intervals around a series of fitted values. Thank you very much in advance.
Since you are running an nls
on each Run
in the sample data set, it is easy to get a list of nls models by splitting each run into its own data frame, and running nls
on each data frame using lapply
library(propagate)
DNase <- DNase
modeldna <- DNase %>% split(DNase$Run)
models <- lapply(modeldna, function(d) nls(density ~ a * exp(b * conc),
start = list(a = 1 , b = 0.5),
data = d))
Now we can get predictions for each point in each model just as easily by running predictNLS
on each model (again inside lapply
)
results <- lapply(seq_along(modeldna), function(i) {
predictNLS(models[[i]], newdata = data.frame(conc = modeldna[[i]]$conc))
})
Because of the output structure of predictNLS
, we need to extract the predictions for each row and coerce them into a data frame:
predictions <- lapply(results, function(x) {
as.data.frame(do.call(rbind, lapply(x$prop, function(y) y$prop)))})
Finally, we can stick our predictions (including confidence intervals) back onto the original data frame:
all_results <- do.call(rbind, lapply(seq_along(modeldna),
function(i) cbind(modeldna[[i]], predictions[[i]])))
This now gives us a complete data frame of original data points, and the relevant predictions with confidence intervals.
To show this, we can plot the results in ggplot
. Here we show one plot for each run, including its original data, the predicted value as a dotted line, and the 95% confidence limit as a pale blue ribbon:
library(ggplot2)
ggplot(all_results, aes(x = conc, y = density)) +
geom_ribbon(aes(ymin = `2.5%`, ymax = `97.5%`),
fill = "deepskyblue4", alpha = 0.2) +
geom_point() +
geom_line(aes(y = Mean.1), linetype = 2) +
facet_wrap(.~factor(Run, levels = 1:11)) +
theme_bw()