I am having a weird issue, I am trying to plot multiple lines in a single graph but it is only one. I am sharing the screenshot as you can see the close values are different in both. It is not rendering binance graph as it seems to be overridden.
Graph
Update
The code is given below
# All Imports
import ccxt
import pandas as pd
import matplotlib.pyplot as plt
# Connect binance
binance = ccxt.binance()
ftx = ccxt.ftx()
binance_btc_usdt_ohlcv = binance.fetch_ohlcv('BTC/USDT','1d',limit=100)
ftx_btc_usdt_ohlcv = ftx.fetch_ohlcv('BTC/USDT','1d',limit=100)
df_binance = pd.DataFrame(binance_btc_usdt_ohlcv, columns=['ts', 'o', 'h', 'l', 'c', 'v'])
df_ftx = pd.DataFrame(ftx_btc_usdt_ohlcv, columns=['ts', 'o', 'h', 'l', 'c', 'v'])
fig, ax = plt.subplots()
ax.plot(df_binance['ts'], df_binance['v'],label='Binance')
ax.plot(df_ftx['ts'], df_ftx['v'],label='FTX')
plt.legend()
# ax.tick_params(axis='x', colors='red')
plt.show()
python 3.8.12
, pandas 1.3.3
, matplotlib 3.4.3
'Binance'
is small compared to 'FTX'
, which can be resolved with ax.set_yscale('log')
df_binance = pd.DataFrame(binance_btc_usdt_ohlcv, columns=['ts', 'o', 'h', 'l', 'c', 'v'])
df_ftx = pd.DataFrame(ftx_btc_usdt_ohlcv, columns=['ts', 'o', 'h', 'l', 'c', 'v'])
fig, ax = plt.subplots()
ax.plot(df_binance['ts'], df_binance['v'], label='Binance')
ax.plot(df_ftx['ts'], df_ftx['v'], label='FTX')
ax.legend()
ax.set_yscale('log') # resolve issues of scale with the y-axis values
plt.show()
ax.set_yscale('log')
, 'Binance'
still shows up on the plot'v'
, but the issue was occuring with 'c'
(in the screenshot).
df_ftx.c
and df_binance.c
are almost exactly the same, which we can see by using alpha=0.5
.# plot dataframe
ax = df_binance.plot(x='ts', y='c', label='Binance', figsize=(8, 6), logy=True)
p2 = df_ftx.plot(x='ts', y='c', label='FTX', ax=ax, alpha=0.5)
ax.legend(bbox_to_anchor=(1, 1.02), loc='upper left')
plt.show()
>>> df_binance.c.sub(df_ftx.c)
0 1.00
1 -2.13
2 0.07
3 -2.44
4 -0.35
5 1.35
6 11.51
7 -6.17
8 -11.91
9 -2.86
10 -13.98
11 -7.40
12 -3.13
13 1.56
14 -15.52
15 -8.63
16 0.83
17 10.44
18 0.82
19 -0.95
20 -12.82
21 -2.54
22 -15.13
23 -14.46
24 -4.63
25 -12.60
26 -10.01
27 -17.00
28 -4.00
29 -16.00
30 -9.49
31 -5.18
32 -3.71
33 23.95
34 -4.71
35 -2.38
36 -11.53
37 -7.13
38 -10.78
39 1.85
40 0.01
41 -9.68
42 7.87
43 9.90
44 -4.65
45 2.83
46 5.91
47 -3.11
48 -14.48
49 -11.36
50 -0.86
51 2.64
52 -22.12
53 -8.10
54 -6.27
55 -3.69
56 -0.86
57 1.91
58 5.69
59 1.24
60 -1.27
61 -12.48
62 -1.59
63 -8.18
64 5.98
65 -6.26
66 -4.25
67 -2.38
68 11.38
69 -9.39
70 -4.74
71 -0.43
72 -9.36
73 -3.10
74 -0.65
75 1.54
76 -2.72
77 -1.90
78 -0.39
79 -9.10
80 -4.99
81 -6.06
82 6.99
83 0.00
84 -8.78
85 2.43
86 -2.28
87 -10.00
88 -9.65
89 -5.07
90 -1.00
91 -0.06
92 -28.58
93 -8.43
94 -8.67
95 -17.16
96 -3.41
97 -12.59
98 -1.85
99 5.99
Name: c, dtype: float64
'ts'
to a datetime dtype
with pd.to_datetime
pandas.DataFrame.plot
since the data is in a dataframe
secondary_y
, otherwise use the parameter logy=True
.df_binance = pd.DataFrame(binance_btc_usdt_ohlcv, columns=['ts', 'o', 'h', 'l', 'c', 'v'])
df_binance.ts = pd.to_datetime(df_binance.ts, unit='ms') # convert column to a datetime dtype
df_ftx = pd.DataFrame(ftx_btc_usdt_ohlcv, columns=['ts', 'o', 'h', 'l', 'c', 'v'])
df_ftx.ts = pd.to_datetime(df_ftx.ts, unit='ms') # convert column to a datetime dtype
# plot dataframe
ax = df_binance.plot(x='ts', y='v', label='Binance', figsize=(8, 6))
p2 = df_ftx.plot(x='ts', y='v', label='FTX', ax=ax, secondary_y=True)
ax.legend(loc='upper left')
p2.legend(loc='upper right')
plt.show()
logy=True
instead of secondary_y=True
# plot dataframe
ax = df_binance.plot(x='ts', y='v', label='Binance', figsize=(8, 6), logy=True)
p2 = df_ftx.plot(x='ts', y='v', label='FTX', ax=ax)
ax.legend(bbox_to_anchor=(1, 1.02), loc='upper left')
plt.show()