On cppreference.com, it is stated something like that:
For each declarator, the initializer may be one of the following: ( expression-list ) (1) = expression (2) { initializer-list } (3)
- comma-separated list of arbitrary expressions and braced-init-lists in parentheses
But in my code
int main(){
int a,b=5,c(a,b);
return 0;
}
when I try to compile it, the following error occurs
...error: expression list treated as compound expression in initializer [-fpermissive]
My question: If the list of multiple expressions is allowed in such style of initialization, then why the compiler is not accepting it with the variable c
?
What am I missing?
All right, let's look at this:
int main(){
int a,b=5,c(a,b);
return 0;
}
What do you expect c(a,b) to actually do?
Let's simplify this just slightly:
int main(){
int a,b=5;
int c(a,b);
return 0;
}
This will generate the same syntax error, but it now stands alone. So...
Your code would work if there were a constructor for int that took two ints as parameters. This would also compile:
int c(int a, int b);
But in that case, you're actually defining a function.
Also, this works:
int main() {
int a = 5;
int b = 10;
int c(b);
std::cout << "C == " << c << std::endl;
}
That works because an int can be initialized from a single int. But you're getting an error because you can't initialize an int from two other ints.
This works:
#include <iostream>
class MyClass {
public:
MyClass(int a, int b): value(a + b) {}
int value;
};
int main() {
int a = 5;
int b = 10;
MyClass c(a, b);
std::cout << "C == " << c.value << std::endl;
}
And maybe that's what the article you read was trying to tell you. Note: cpppreference is NOT a good site for learning C++. Get a good book.