I am trying to complete a challenge where i use an equation to construct a new image (d) from other images. Then i must get the flag in the image (d). The given images are a.png, b.png c.png and y.png and they can be found here: https://drive.google.com/drive/folders/1bZOm_0apr5ZmaRNf9R5UVIEmtMuYSphn?usp=sharing
The equation: d = y - 21a - 3b + 41c
My current code
from PIL import Image
imagey = Image.open('y.png')
imagea = Image.open('a.png')
imageb = Image.open('b.png')
imagec = Image.open('c.png')
size = width, height = imagey.size
new = Image.new('RGB', size)
imgy = imagey.load()
imga = imagea.load()
imgb = imageb.load()
imgc = imagec.load()
data = new.load()
for x in range(width):
for y in range(height):
they = imgy[x, y]
thea = imga[x, y]
theb = imgb[x, y]
thec = imgc[x, y]
new_color = ((int(they[0])) & ~(int((21 * thea[0])) ^ int((3 * theb[0])) ^ int(~(41 * thec[0]))),
(int(they[1])) & ~(int((21 * thea[1])) ^ int((3 * theb[1])) ^ int(~(41 * thec[1]))),
(int(they[2])) & ~(int((21 * thea[2])) ^ int((3 * theb[2])) ^ int(~(41 * thec[2]))))
data[x, y] = new_color
new.save('final.png')
new.show()
If you would convert Pillow image
to numpy array
or you would use OpenCV
or imageio
to load image (and get directly numpy array
) then you could do
directly
new = imagey - 21*imagea - 3*imageb + 41*imagec
Result:
Not ideal but much better than with your code.
It can be problem with overflow
. It may create array with 8bits
values and calculations can gives 16bits
or 32bits
values which can be reduced to 8bits
in every calculation.
Full working code:
import imageio
imagey = imageio.imread('y.png')
imagea = imageio.imread('a.png')
imageb = imageio.imread('b.png')
imagec = imageio.imread('c.png')
new = imagey - 21*imagea - 3*imageb + 41*imagec
imageio.imwrite('final.png', new)
# --- imageio doesn't have function to display it ---
import matplotlib.pyplot as plt
plt.imshow(new)
plt.show()
EDIT:
If I use OpenCV
then I get ideal result
Full working code:
import cv2
imagey = cv2.imread('y.png')
imagea = cv2.imread('a.png')
imageb = cv2.imread('b.png')
imagec = cv2.imread('c.png')
new = imagey - 21*imagea - 3*imageb + 41*imagec
cv2.imwrite('final.png', new)
# --- show window with image and wait for press any key ---
cv2.imshow('Image', new)
cv2.waitKey(0)
cv2.destroyAllWindows()
EDIT:
By the way: version which converts PIL Image
to numpy array
and later it converts back to PIL Image
- but it gives the same result as imageio
.
from PIL import Image
import numpy as np
imagey = Image.open('y.png')
imagea = Image.open('a.png')
imageb = Image.open('b.png')
imagec = Image.open('c.png')
arr_y = np.array(imagey)
arr_a = np.array(imagea)
arr_b = np.array(imageb)
arr_c = np.array(imagec)
arr_new = arr_y - 21*arr_a - 3*arr_b + 41*arr_c
new = Image.fromarray(arr_new)
new.save('final.png')
new.show()
BTW:
If I check images on Linux using program file
then it shows that b.png
and c.png
are JPEG
, not PNG
.
$ file b.png
b.png: JPEG image data, JFIF standard 1.01, resolution (DPI),
density 300x300, segment length 16,
Exif Standard: [TIFF image data, big-endian, direntries=0], baseline,
precision 8, 960x640, components 3
I found that cv2.imread()
gives little different values for c.png
(which is JPG
file) then other modules - and I don't mean that cv2
gives colors in BGR
instead of RGB
- and later this gives correct result. Probably cv2
uses different C library to read JPG
.