Search code examples
tensorflowbert-language-model

TF BERT input packer on more than two inputs


Some of the TensorFlow examples using BERT models show a use of the BERT preprocessor to "pack" inputs. E.g. in this example,

text_preprocessed = bert_preprocess.bert_pack_inputs([tok, tok], tf.constant(20))

The documentation implies that this works equally well with more than two input sentences, such that (I would expect) one can do something like:

text_preprocessed = bert_preprocess.bert_pack_inputs([tok, tok, tok], tf.constant(20))

However, so doing causes the error at the bottom[1] of this post.

I get that there isn't a matching signature; if I read this correctly (and I may not!), there's a signature for a single input and one for two. But what's the recommended way to pack more than two sentences into input suitable for a classification task, as suggested in the above colab?

1.

ValueError: Could not find matching function to call loaded from the SavedModel. Got:
  Positional arguments (2 total):
    * [tf.RaggedTensor(values=tf.RaggedTensor(values=Tensor("inputs:0", shape=(None,), dtype=int32), row_splits=Tensor("inputs_2:0", shape=(None,), dtype=int64)), row_splits=Tensor("inputs_1:0", shape=(2,), dtype=int64)), tf.RaggedTensor(values=tf.RaggedTensor(values=Tensor("inputs_3:0", shape=(None,), dtype=int32), row_splits=Tensor("inputs_5:0", shape=(None,), dtype=int64)), row_splits=Tensor("inputs_4:0", shape=(2,), dtype=int64)), tf.RaggedTensor(values=tf.RaggedTensor(values=Tensor("inputs_6:0", shape=(None,), dtype=int32), row_splits=Tensor("inputs_8:0", shape=(None,), dtype=int64)), row_splits=Tensor("inputs_7:0", shape=(2,), dtype=int64))]
    * Tensor("seq_length:0", shape=(), dtype=int32)
  Keyword arguments: {}

Expected these arguments to match one of the following 4 option(s):

Option 1:
  Positional arguments (2 total):
    * [RaggedTensorSpec(TensorShape([None, None]), tf.int32, 1, tf.int64)]
    * TensorSpec(shape=(), dtype=tf.int32, name='seq_length')
  Keyword arguments: {}

Option 2:
  Positional arguments (2 total):
    * [RaggedTensorSpec(TensorShape([None, None]), tf.int32, 1, tf.int64), RaggedTensorSpec(TensorShape([None, None]), tf.int32, 1, tf.int64)]
    * TensorSpec(shape=(), dtype=tf.int32, name='seq_length')
  Keyword arguments: {}

Option 3:
  Positional arguments (2 total):
    * [RaggedTensorSpec(TensorShape([None, None, None]), tf.int32, 2, tf.int64), RaggedTensorSpec(TensorShape([None, None, None]), tf.int32, 2, tf.int64)]
    * TensorSpec(shape=(), dtype=tf.int32, name='seq_length')
  Keyword arguments: {}

Option 4:
  Positional arguments (2 total):
    * [RaggedTensorSpec(TensorShape([None, None, None]), tf.int32, 2, tf.int64)]
    * TensorSpec(shape=(), dtype=tf.int32, name='seq_length')
  Keyword arguments: {}```

Solution

  • BERT model expects specific input shape.

    Working sample code:

    bert_preprocess = hub.KerasLayer("https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3")
    bert_encoder = hub.KerasLayer("https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/4",trainable=True)
    
    def get_sentence_embeding(sentences):
        preprocessed_text = bert_preprocess(sentences)
        return bert_encoder(preprocessed_text)['pooled_output']
    
    get_sentence_embeding([
        "How to find which version of TensorFlow is", 
        "TensorFlow not found using pip"]
    )