I have a dataframe that looks like this:
In[1]: df.head()
Out[1]:
dataset x y
1 56 45
1 31 67
7 22 85
2 90 45
2 15 42
There are about 4000 more rows. x and y is grouped by the datasets. I am trying to plot a jointplot for each dataset separately using seaborn. This is what I can come up so far:
import seaborn as sns
g = sns.FacetGrid(df, col="dataset", col_wrap=3)
g.map_dataframe(sns.scatterplot, x="x", y="y", color = "#7db4a2")
g.map_dataframe(sns.histplot, x="x", color = "#7db4a2")
g.map_dataframe(sns.histplot, y="y", color = "#7db4a2")
g.add_legend();
but there are all overlapped. How do I make a proper jointplot for each dataset in a subplot? Thank you in advanced and cheers!
You can use groupby
on your dataset column, then use sns.jointgrid()
, and then finally add your scatter plot and KDE plot to the jointgrid.
Here is an example using a random seed generator with numpy. I made three "datasets" and random x,y values. See the Seaborn jointgrid
documentation for ways to customize colors, etc.
### Build an example dataset
np.random.seed(seed=1)
ds = (np.arange(3)).tolist()*10
x = np.random.randint(100, size=(60)).tolist()
y = np.random.randint(20, size=(60)).tolist()
df = pd.DataFrame(data=zip(ds, x, y), columns=["ds", "x", "y"])
### The plots
for _ds, group in df.groupby('ds'):
group = group.copy()
g = sns.JointGrid(data=group, x='x', y='y')
g.plot(sns.scatterplot, sns.kdeplot)