I am trying to plot the output from the predict of a ML model, there are the classes 1,0 for the Target, and the Score. Due the dataset is not balanced, there are few 1's.
When I plot a simple displot with the Target in the hue parameter, the plot is useless for describing the 1's
sns.set_theme()
sns.set_palette(sns.color_palette('rocket', 3))
sns.displot(df, x='Score', hue='Target', bins=30, linewidth=0, height=5, kde=True, aspect=1.6)
plt.show()
I want to change the scale for the 1's in the same plot, with a second y-scale in the right with twinx.
I have tried the following codes that may solve the problem with 2 plots, but I need only one plot. I couldn't use twinx.
g = sns.displot(df, x='Score', col='Target', bins=30, linewidth=0, height=5, kde=True, aspect=1.6, facet_kws={'sharey': False, 'sharex': False})
g.axes[0,1].set_ylim(0,400)
plt.show()
g = sns.FacetGrid(df, hue='Target')
g = g.map(sns.displot, 'Score', bins=30, linewidth=0, height=3, kde=True, aspect=1.6)
A reproducible example could be with the titanic dataset:
df_ = sns.load_dataset('titanic')
sns.displot(df_, x='fare', hue='survived', bins=30, linewidth=0, height=5, kde=True, aspect=1.6)
g = sns.displot(df_, x='fare', col='survived', bins=30, linewidth=0, height=5, kde=True, aspect=1.6, facet_kws={'sharey': False, 'sharex': False})
g.axes[0,1].set_ylim(0,150)
plt.show()
I am not sure but are you looking for this.
import seaborn as sns
import matplotlib.pyplot as plt
sns.set()
df_ = sns.load_dataset('titanic')
sns.histplot(df_[df_['survived']==1]['fare'], bins=30, linewidth=0, kde=True, color='red')
ax2 = plt.twinx()
sns.histplot(df_[df_['survived']==0]['fare'], bins=30, linewidth=0, kde=True, ax=ax2, color='blue')