Search code examples
pythonmachine-learningscikit-learnlogistic-regressionsklearn-pandas

Multiple problems with Logistic Regression (1. all CV values have the same score, 2. classification report and accuracy doesn't match)


I have implemented logistic regression on bank loan data. I have used gridsearchCV for hyperparameter tuning and implemented Logistic regression with multiple kfolds = [3,5,6] this is my code

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
#from google.colab import files
import io

import warnings
warnings.filterwarnings('ignore')
#uploaded = files.upload()

df = pd.read_csv('CleanedLoanData13Cols.csv')

from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler, MinMaxScaler, RobustScaler
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV

X = df.drop('loan_status', axis=1, inplace=False)
y = df['loan_status']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = 4)
parameters = {'penalty': ['l1', 'l2','elasticnet'],
                  'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
                  'solver' : ['liblinear', 'newton-cg', 'lbfgs', 'saga', 'sag'],
                  'multi_class' : ['auto'],
                  'max_iter'    : [5,15,25]
                 }

import warnings
warnings.filterwarnings("ignore")

cv_folds = [3, 5, 6]
s_scaler = StandardScaler()
#m_scaler = MinMaxScaler()
#r_scaler = RobustScaler()
s_scaled_X_train = s_scaler.fit_transform(X_train)
s_scaled_X_test = s_scaler.transform(X_test)

for x in cv_folds:
    logmodel = GridSearchCV(LogisticRegression(random_state = 42), parameters, cv = x, scoring = 'accuracy', refit = True)
    logmodel.fit(X_train, y_train)
    
    print('The best score with CV =', x, 'is', logmodel.score(X_test, y_test), 'with parameters =\n\n', logmodel.best_params_, '\n\n')

the output: (first issue: this didn't seem right to me! correct me if I'm wrong?)

The best score with CV = 3 is 0.929636746271388 with parameters =

 {'C': 0.001, 'max_iter': 25, 'multi_class': 'auto', 'penalty': 'l2', 'solver': 'liblinear'} 

The best score with CV = 5 is 0.929636746271388 with parameters =

 {'C': 0.001, 'max_iter': 25, 'multi_class': 'auto', 'penalty': 'l2', 'solver': 'liblinear'} 


The best score with CV = 6 is 0.929636746271388 with parameters =

 {'C': 0.001, 'max_iter': 25, 'multi_class': 'auto', 'penalty': 'l2', 'solver': 'liblinear'} 

continuation

results = logmodel.cv_results_

print(results.get('params'))

print(results.get('mean_test_score'))

output:

[0.9084348         nan        nan 0.8323203         nan 0.83239873
 0.83671225 0.8323203  0.8323203  0.8323203         nan        nan
        nan        nan        nan 0.91647373        nan        nan
 0.8323203         nan 0.902435   0.89474906 0.8520445  0.8323203 and so on

continuation:

print(results.get('mean_train_score'))

output: None

print(logmodel.best_params_)

{'C': 0.001, 'max_iter': 25, 'multi_class': 'auto', 'penalty': 'l2', 'solver': 'liblinear'}

print(logmodel.best_score_)

output: 0.9226303384209481 (i think there is something wrong here too because this and accuracy in the classification report don't match)

final_model = logmodel.best_estimator_

s_predictions = final_model.predict(s_scaled_X_test)

from sklearn.metrics import classification_report, confusion_matrix, plot_confusion_matrix

print(classification_report(y_test, s_predictions))
print(confusion_matrix(y_test, s_predictions))

output: accuracy here is 0.62 whereas on the top is 92

precision    recall  f1-score   support

           0       0.88      0.64      0.74      9197
           1       0.22      0.53      0.31      1732

    accuracy                           0.62     10929
   macro avg       0.55      0.59      0.53     10929
weighted avg       0.77      0.62      0.67     10929

[[5902 3295]
 [ 812  920]]

I don't know where I went wrong? I have been banging my head on this for the last few hours and I am not able to understand where did I go wrong? Would really be thankful if anyone gave their input on this?


Solution

  • The problem here is that your are fitting your model on unscaled data X_train, y_train.

    logmodel.fit(X_train, y_train)
    

    Then you trying to predicting on scaled data s_scaled_X_test which explain this drop in performance.

    s_predictions = final_model.predict(s_scaled_X_test)
    

    To fix that you should train your model using scaled data as follows:

    logmodel.fit(s_scaled_X_train, y_train)