Setting minute minor ticks for 1-second sampled data raises: OverflowError: int too big to convert
Consider this dataframe with a sample interval of 1 second that spans about 30 minutes:
import matplotlib.pyplot as plt
from matplotlib.dates import MinuteLocator
import pandas as pd
ndex = pd.date_range('2021-08-01 07:07:07', '2021-08-01 07:41:12', freq='1S', name='Time')
df = pd.DataFrame(data=np.random.randint(1, 100, len(ndex)), index=ndex, columns=['A'])
And now we plot it:
fig, ax = plt.subplots()
df.plot(color='red', marker='x', lw=0, ms=0.2, ax=ax)
Which creates a plot without any complaints:
Now I'd like to have minor ticks at every minute.
I've tried this:
ax.xaxis.set_minor_locator(MinuteLocator())
But that fails with OverflowError: int too big to convert
pandas.DataFrame.plot
uses matplotlib
as the default plotting backend, but it encodes date ticks as unix timestamps, which results in OverflowError: int too big to convert
.
kind='line'
, but marker='x', lw=0, ms=0.2
are used in the OP to make a hacky scatter plot.pandas.DataFrame.plot.scatter
will work correctly.matplotlib.pyplot.scatter
will work as expected.
seaborn.scatterplot
will also work:
sns.scatterplot(x=df.index, y=df.A, color='red', marker='x', ax=ax)
python 3.8.11
, pandas 1.3.2
, matplotlib 3.4.3
, seaborn 0.11.2
matplotlib.pyplot.scatter
'01'
) that would precede the time in the tick labels (e.g. '%m %H:%M'
).import matplotlib.dates as mdates
import matplotlib.pyplot as plt
fig, ax = plt.subplots(figsize=(25, 6))
ax.scatter(x=df.index, y=df.A, color='red', marker='x')
hourlocator = mdates.HourLocator(interval=1) # adds some extra formatting, but not required
majorFmt = mdates.DateFormatter('%H:%M') # adds some extra formatting, but not required
ax.xaxis.set_major_locator(mdates.MinuteLocator())
ax.xaxis.set_major_formatter(majorFmt) # adds some extra formatting, but not required
_ = plt.xticks(rotation=90)
pandas.DataFrame.plot.scatter
pandas.DataFrame.plot
with kind='scatter'
ax = df.reset_index().plot(kind='scatter', x='Time', y='A', color='red', marker='x', figsize=(25, 6), rot=90)
# reset the index so Time will be a column to assign to x
ax = df.reset_index().plot.scatter(x='Time', y='A', color='red', marker='x', figsize=(25, 6), rot=90)
ax.xaxis.set_major_locator(mdates.MinuteLocator())
pandas.DataFrame.plot
xticks
ax = df.plot(color='red', marker='x', lw=0, ms=0.2, figsize=(25, 6))
# extract the xticks to see the format
ticks = ax.get_xticks()
print(ticks)
[out]:
array([1627801627, 1627803672], dtype=int64)
# convert the column to unix format to compare
(df.index - pd.Timestamp("1970-01-01")) // pd.Timedelta('1s')
[out]:
Int64Index([1627801627, 1627801628, 1627801629, 1627801630, 1627801631,
1627801632, 1627801633, 1627801634, 1627801635, 1627801636,
...
1627803663, 1627803664, 1627803665, 1627803666, 1627803667,
1627803668, 1627803669, 1627803670, 1627803671, 1627803672],
dtype='int64', name='Time', length=2046)
matplotlib.pyplot.scatter
xticks
fig, ax = plt.subplots(figsize=(25, 6))
ax.scatter(x=df.index, y=df.A, color='red', marker='x')
ticks2 = ax.get_xticks()
print(ticks2)
[out]:
array([18840.29861111, 18840.30208333, 18840.30555556, 18840.30902778,
18840.3125 , 18840.31597222, 18840.31944444])