Partition of integer:
4 = 4 p(4,1) = 1
= 1+3, 2+2 p(4,2) = 2
= 1+1+2 p(4,3) = 1
= 1+1+1+1 p(4,4) = 1
/max(p(4, k)) = 2, at k = 2
5 = 5 p(5,1) = 1
= 1+4, 2+3 p(5,2) = 2
= 1+1+3, 1+2+2 p(5,3) = 2
= 1+1+1+2 p(5,4) = 1
= 1+1+1+1+1 p(5,5) = 1
/max(p(5, k)) = 2, at k = 2 and 3
and p(n) = Σp(n, k) for ∀k: 0<k<=n
p(4) = p(4, 1) + p(4, 2) + p(4, 3) + p(4, 4) = 1 + 2 + 1 + 1 = 5
p(5) = p(5, 1) + p(5, 2) + p(5, 3) + p(5, 4) + p(5, 5) = 1 + 2 + 2 + 1 + 1 + 1 = 7
for this I used Euler's Identity p(n, k) = p(n-1, k-1) + p(n-k, k)
#p(n, k) = p(n-1, k-1) + p(n-k, k)
N = int(input())
p = [[0]*(N+1) for i in range(N+1)]
for i in range(N+1):
p[i][1] = 1
p[i][i] = 1
for n in range(2, N+1):
for k in range(2, n+1):
p[n][k] = p[n-1][k-1] + p[n-k][k]
print(sum(p[-1]))
for x in p:
print(x[1:])
print(sum(x))
Using above code I could have been able to find partition of Integer: p(N)
i.e The total number of ways in which a given number n
can be expressed as sum of all positive integers.
But, Now I want to find the value of k
for which p(n, k)
is maximum.
But without using Euler's Identity in python.
For rather small n
values you can implicitly generate all partitions, count number of parts in every partition.
n = 7
kcounts = [0]*n
def parts(sum, last = 1, k=0):
if sum == 0:
global kcounts
kcounts[k-1] += 1
return
for i in range(last, sum + 1):
parts(sum - i, i, k + 1)
parts(n)
print(kcounts)
>>[1, 3, 4, 3, 2, 1, 1]
So k=3 gives maximum partitions