Search code examples
pandasdropdownheatmapplotly-dashplotly-python

Plotly Dash heatmap, linked to 2 dropdowns


how is it possible to create an application in plotly dash, in which i want to create a heatmap linked to 2 dropdowns? The dropdowns are reading from a Pandas DF, ‘my_dropdown1’ and ‘my_dropdown2’.


Solution

  • I think a good example of this case is in the Dash documentation: basic callbacks, Dash App With Multiple Inputs. https://dash.plotly.com/basic-callbacks

    This example has 2 dropdowns and 2 radio buttons. And the graph created is a scatter plot. You could reformat this example to create a heat map and use two drop downs.

    import dash
    import dash_core_components as dcc
    import dash_html_components as html
    from dash.dependencies import Input, Output
    import plotly.express as px
    
    import pandas as pd
    
    app = dash.Dash(__name__)
    
    df = pd.read_csv('https://plotly.github.io/datasets/country_indicators.csv')
    
    available_indicators = df['Indicator Name'].unique()
    
    app.layout = html.Div([
        html.Div([
    
            html.Div([
                dcc.Dropdown(
                    id='xaxis-column',
                    options=[{'label': i, 'value': i} for i in available_indicators],
                    value='Fertility rate, total (births per woman)'
                ),
                dcc.RadioItems(
                    id='xaxis-type',
                    options=[{'label': i, 'value': i} for i in ['Linear', 'Log']],
                    value='Linear',
                    labelStyle={'display': 'inline-block'}
                )
            ], style={'width': '48%', 'display': 'inline-block'}),
    
            html.Div([
                dcc.Dropdown(
                    id='yaxis-column',
                    options=[{'label': i, 'value': i} for i in available_indicators],
                    value='Life expectancy at birth, total (years)'
                ),
                dcc.RadioItems(
                    id='yaxis-type',
                    options=[{'label': i, 'value': i} for i in ['Linear', 'Log']],
                    value='Linear',
                    labelStyle={'display': 'inline-block'}
                )
            ], style={'width': '48%', 'float': 'right', 'display': 'inline-block'})
        ]),
    
        dcc.Graph(id='indicator-graphic'),
    
        dcc.Slider(
            id='year--slider',
            min=df['Year'].min(),
            max=df['Year'].max(),
            value=df['Year'].max(),
            marks={str(year): str(year) for year in df['Year'].unique()},
            step=None
        )
    ])
    
    
    @app.callback(
        Output('indicator-graphic', 'figure'),
        Input('xaxis-column', 'value'),
        Input('yaxis-column', 'value'),
        Input('xaxis-type', 'value'),
        Input('yaxis-type', 'value'),
        Input('year--slider', 'value'))
    def update_graph(xaxis_column_name, yaxis_column_name,
                     xaxis_type, yaxis_type,
                     year_value):
        dff = df[df['Year'] == year_value]
    
        fig = px.scatter(x=dff[dff['Indicator Name'] == xaxis_column_name]['Value'],
                         y=dff[dff['Indicator Name'] == yaxis_column_name]['Value'],
                         hover_name=dff[dff['Indicator Name'] == yaxis_column_name]['Country Name'])
    
        fig.update_layout(margin={'l': 40, 'b': 40, 't': 10, 'r': 0}, hovermode='closest')
    
        fig.update_xaxes(title=xaxis_column_name,
                         type='linear' if xaxis_type == 'Linear' else 'log')
    
        fig.update_yaxes(title=yaxis_column_name,
                         type='linear' if yaxis_type == 'Linear' else 'log')
    
        return fig
    
    
    if __name__ == '__main__':
        app.run_server(debug=True)