I'm trying to change a colorbar attached to a scatter plot so that the minimum and maximum of the colorbar are the minimum and maximum of the data, but I want the data to be centred at zero as I'm using a colormap with white at zero. Here is my example
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0, 1, 61)
y = np.linspace(0, 1, 61)
C = np.linspace(-10, 50, 61)
M = np.abs(C).max() # used for vmin and vmax
fig, ax = plt.subplots(1, 1, figsize=(5,3), dpi=150)
sc=ax.scatter(x, y, c=C, marker='o', edgecolor='k', vmin=-M, vmax=M, cmap=plt.cm.RdBu_r)
cbar=fig.colorbar(sc, ax=ax, label='$R - R_0$ (mm)')
ax.set_xlabel('x')
ax.set_ylabel('y')
As you can see from the attached figure, the colorbar goes down to -M
, where as I want the bar to just go down to -10, but if I let vmin=-10
then the colorbar won't be zerod at white. Normally, setting vmin
to +/- M
when using contourf
the colorbar automatically sorts to how I want. This sort of behaviour is what I expect when contourf
uses levels=np.linspace(-M,M,61)
rather than setting it with vmin
and vmax
with levels=62
. An example showing the default contourf
colorbar behaviour I want in my scatter
example is shown below
plt.figure(figsize=(6,5), dpi=150)
plt.contourf(x, x, np.reshape(np.linspace(-10, 50, 61*61), (61,61)),
levels=62, vmin=-M, vmax=M, cmap=plt.cm.RdBu_r)
plt.colorbar(label='$R - R_0$ (mm)')
Does anyone have any thoughts? I found this link which I thought might solve the problem, but when executing the cbar.outline.set_ydata
line I get this error AttributeError: 'Polygon' object has no attribute 'set_ydata'
.
EDIT a little annoyed that someone has closed this question without allowing me to clarify any questions they might have, as none of the proposed solutions are what I'm asking for.
As for Normalize.TwoSlopeNorm
, I do not want to rescale the smaller negative side to use the entire colormap range, I just want the colorbar attached to the side of my graph to stop at -10
.
This link also does not solve my issue, as it's the TwoSlopeNorm
solution again.
Another approach until v3.5 is released is to make a custom colormap that does what you want (see also https://matplotlib.org/stable/tutorials/colors/colormap-manipulation.html#sphx-glr-tutorials-colors-colormap-manipulation-py)
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.cm as cm
from matplotlib.colors import ListedColormap
fig, axs = plt.subplots(2, 1)
X = np.random.randn(32, 32) + 2
pc = axs[0].pcolormesh(X, vmin=-6, vmax=6, cmap='RdBu_r')
fig.colorbar(pc, ax=axs[0])
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.cm as cm
from matplotlib.colors import ListedColormap
fig, axs = plt.subplots(2, 1)
X = np.random.randn(32, 32) + 2
pc = axs[0].pcolormesh(X, vmin=-6, vmax=6, cmap='RdBu_r')
fig.colorbar(pc, ax=axs[0])
def keep_center_colormap(vmin, vmax, center=0):
vmin = vmin - center
vmax = vmax - center
dv = max(-vmin, vmax) * 2
N = int(256 * dv / (vmax-vmin))
RdBu_r = cm.get_cmap('RdBu_r', N)
newcolors = RdBu_r(np.linspace(0, 1, N))
beg = int((dv / 2 + vmin)*N / dv)
end = N - int((dv / 2 - vmax)*N / dv)
newmap = ListedColormap(newcolors[beg:end])
return newmap
newmap = keep_center_colormap(-2, 6, center=0)
pc = axs[1].pcolormesh(X, vmin=-2, vmax=6, cmap=newmap)
fig.colorbar(pc, ax=axs[1])
plt.show()