I have data with three variables: date, age group, and cumulative doses of a drug. There are multiple observations per day (one for each age group). I need to preserve the number of rows and variables as in the original data, but also add a fourth variable that represents the actual number of doses administered to the relevant group on the relevant date.
I've tried the solutions to this question, but have had no luck. I get warnings about the mutate function introducing NAs. The code doesn't error out, but the numbers I get in the new variable are not correct. Some of them are NAs, like the warning says, and some are even negative. I think it might have to do with the fact that there are two variables I think I need to group by and neither is numeric, but I'm not sure. I tried coercing the group variables to numeric before using the solutions on the other SO post, but had the same issues with the results.
Here is a dummy dataset with similar characteristics as mine:
structure(list(test_dates = structure(c(17897, 17897, 17897,
17897, 17897, 17898, 17898, 17898, 17898, 17898, 17899, 17899,
17899, 17899, 17899, 17900, 17900, 17900, 17900, 17900, 17901,
17901, 17901, 17901, 17901, 17902, 17902, 17902, 17902, 17902,
17903, 17903, 17903, 17903, 17903, 17904, 17904, 17904, 17904,
17904, 17905, 17905, 17905, 17905, 17905, 17906, 17906, 17906,
17906, 17906), class = "Date"), test_ages = structure(c(1L, 5L,
3L, 2L, 4L, 1L, 5L, 3L, 2L, 4L, 1L, 5L, 3L, 2L, 4L, 1L, 5L, 3L,
2L, 4L, 1L, 5L, 3L, 2L, 4L, 1L, 5L, 3L, 2L, 4L, 1L, 5L, 3L, 2L,
4L, 1L, 5L, 3L, 2L, 4L, 1L, 5L, 3L, 2L, 4L, 1L, 5L, 3L, 2L, 4L
), .Label = c("<18", "18-29", "30-39", "40-49", "50+"), class = c("ordered",
"factor")), cumudose = c(50, 200, 300, 400, 20, 60, 220, 317,
450, 28, 90, 330, 350, 460, 38, 150, 400, 400, 500, 50, 175,
453, 429, 574, 69, 182, 491, 474, 601, 102, 205, 506, 491, 682,
176, 235, 516, 568, 821, 199, 250, 525, 596, 850, 260, 294, 533,
667, 888, 277)), row.names = c(NA, -50L), class = "data.frame")
The first 10 rows of the data frame as it currently stands looks like this:
test_dates | test_ages | cumudose |
---|---|---|
2019-01-01 | <18 | 50 |
2019-01-01 | 50+ | 200 |
2019-01-01 | 30-39 | 300 |
2019-01-01 | 18-29 | 400 |
2019-01-01 | 40-49 | 20 |
2019-01-02 | <18 | 60 |
2019-01-02 | 50+ | 220 |
2019-01-02 | 30-39 | 317 |
2019-01-02 | 18-29 | 450 |
2019-01-02 | 40-49 | 28 |
I would like the data to look like this after the new variable is added:
test_dates | test_ages | cumudose | numdose |
---|---|---|---|
2019-01-01 | <18 | 50 | 50 |
2019-01-01 | 50+ | 200 | 200 |
2019-01-01 | 30-39 | 300 | 300 |
2019-01-01 | 18-29 | 400 | 400 |
2019-01-01 | 40-49 | 20 | 20 |
2019-01-02 | <18 | 60 | 10 |
2019-01-02 | 50+ | 220 | 20 |
2019-01-02 | 30-39 | 317 | 17 |
2019-01-02 | 18-29 | 450 | 50 |
2019-01-02 | 40-49 | 28 | 8 |
Let me know if I can provide any additional information!
We may need the diff
erence
library(dplyr)
out <- df1 %>%
group_by(test_ages) %>%
mutate(numdose = c(first(cumudose), diff(cumudose))) %>%
ungroup
-output
> out
# A tibble: 50 x 4
test_dates test_ages cumudose numdose
<date> <ord> <dbl> <dbl>
1 2019-01-01 <18 50 50
2 2019-01-01 50+ 200 200
3 2019-01-01 30-39 300 300
4 2019-01-01 18-29 400 400
5 2019-01-01 40-49 20 20
6 2019-01-02 <18 60 10
7 2019-01-02 50+ 220 20
8 2019-01-02 30-39 317 17
9 2019-01-02 18-29 450 50
10 2019-01-02 40-49 28 8
# … with 40 more rows
or do the difference between the lag
and the current values
df1 %>%
group_by(test_ages) %>%
mutate(numdose = coalesce(cumudose - lag(cumudose), cumudose)) %>%
ungroup
# A tibble: 50 x 4
test_dates test_ages cumudose numdose
<date> <ord> <dbl> <dbl>
1 2019-01-01 <18 50 50
2 2019-01-01 50+ 200 200
3 2019-01-01 30-39 300 300
4 2019-01-01 18-29 400 400
5 2019-01-01 40-49 20 20
6 2019-01-02 <18 60 10
7 2019-01-02 50+ 220 20
8 2019-01-02 30-39 317 17
9 2019-01-02 18-29 450 50
10 2019-01-02 40-49 28 8
# … with 40 more rows