I know this question gets asked a lot, but I have a specific use case, so I don't think it's a duplicate!
I have an abstract base class:
template<int N>
class Child;
class Base
{
public:
// Factory-like generation of children as Base
static Ptr<Base> New(int baseN)
{
if (baseN == 2) return new Child<2>();
else if (baseN == 3) return new Child<3>()
}
// Update
virtual void update() = 0;
};
And I'm writing some children of Base
as class templates (on an int):
template<int N>
class Child
:
public Base
{
// Member, N is not the size of matrix, more like the size of a component in matrix
Matrix<N> m_member;
public:
// Implement update
virtual void update();
// Should call the passed callable on m_member
virtual void execute(std::function<void(Matrix<N>&)>&);
};
// Force compilation of Child<N> for some values of N (of interest, including 3) here
// Then,
int baseN = 3;
Ptr<Base> obj = Base::New(baseN); // will get me a Child<3> as a Base object
auto callable = [](Matrix<3>) ->void {};
// Can I access Child<3>::m_member ??
// Can't cast to Child<baseN> (baseN is not constexpr) and don't want to
// But want to do something like:
obj->execute(callable);
// Which forwards 'callable' to the method from concrete type, probably using a cast?
In short, I need to have some sort of access to m_member
from the declared Base
object.
Preferably, a way to call Child<N>::execute
from Base
without making Base a template on N too.
Things I've tried/thought-of include:
Matrix<N>
by hiding them behind an interface, but because Matrix<N>
's interface strongly depends on N, doing that renders the classes useless (think: Vector<N>& Matrix<N>::diag()
for example)Base::New
do anything to record what concrete type it creates? I doubt that because types are not objects.EDIT: (Btw this is C++11)
So, I accidentally figured out a way to do this; but I don't quite understand why the following works (Not well versed into assembly yet):
unordered_map<string, object*>
where object
is a class that every registered object has to inherit from).Child<N>
.findChild<int N>
template which employs compile-time recursion to find which concrete class was the Base pointer created from (At runTime, by dynamicCasting and testing). When It finds it, it can cast it to void*
through a static method (findChild<N>::castToConcrete
)findChild<0>
to access the findChild<N>
in question if Child<N>
is polymorphic. This forces us to have at most one object of Child (for all possible Ns) and I certainly can live with that.You can see and inspect a minimal code example here: https://onlinegdb.com/CiGR1Fq5z
What I'm so confused about is that Child<0>
and other Child<N>
are completely different types; So how can we access one's members from a pointer to another type? I'm most likely relying on UB and even fear there is a stack smacking of some sort!
For reference, I'm including the code here in case the link dies.
#include <unordered_map>
#include <vector>
#include <functional>
#include <iostream>
using namespace std;
#ifndef MAX_N_VALUE
#define MAX_N_VALUE 10
#endif // !MAX_N_VALUE
// ------------------ Lib code
// A dummy number class for testing only
template <int N> struct Number { constexpr static int value = N; };
// Objects to register to the database
struct object
{
// Members
string name;
// construction/Destruction
object(const string& name) : name(name) {}
virtual ~object(){};
};
// Database of objects
struct DB
: public unordered_map<string, object*>
{
// See if we can the object of name "name" and type "T" in the DB
template <class T>
bool found(const string& name) const
{
unordered_map<string,object*>::const_iterator iter = find(name);
if (iter != end())
{
const T* ptr = dynamic_cast<const T*>(iter->second);
if (ptr) return true;
cout << name << " found but it's of another type." << endl;
return false;
}
cout << name << " not found." << endl;
return false;
}
// Return a const ref to the object of name "name" and type "T" in the DB
// if found. Else, fails
template <class T>
const T& getObjectRef(const string& name) const
{
unordered_map<string,object*>::const_iterator iter = find(name);
if (iter != end())
{
const T* ptr = dynamic_cast<const T*>(iter->second);
if (ptr) return *ptr;
cout << name << " found but it's of another type." << endl;
abort();
}
cout << name << " not found." << endl;
abort();
}
};
// Forward declare children templates
template<int N>
class Child;
// The interface class
struct Base
{
// Construction/Destruction
protected:
static unsigned counter;
Base(){}
public:
virtual ~Base() {}
// Factory-like generation of children as Base
// THIS New method needs to know how to construct Child<N>
// so defining it after Child<N>
static Base* New(int baseN, DB& db);
// Update
virtual void update() = 0;
// Call a callable on a child, the callable interface
// however is independent on N
virtual void execute(std::function<void(Base&)>& callable)
{
callable(*this);
}
};
unsigned Base::counter = 0;
// The concrete types, which we register to the DB
template<int N>
struct Child
:
public Base, public object
{
// members
vector<Number<N>> member;
// Construction/Destruction
Child() : Base(), object(string("Child") + to_string(N) + ">"), member(N, Number<N>()) {}
virtual ~Child() {}
// Test member method (Has to be virtual)
virtual vector<Number<N>> test() const
{
cout << "Calling Child<" << N << ">::test()" << endl;
return vector<Number<N>>(N, Number<N>());
}
// Implement update
virtual void update()
{
cout << "Calling Child<" << N << ">::update()" << endl;
};
};
// New Base, This can be much more sophisticated
// if static members are leveraged to register constructors
// and invoke them on demand.
Base* Base::New(int baseN, DB& db)
{
if (baseN == 2)
{
Child<2>* c = new Child<2>();
db.insert({string("Child<")+std::to_string(2)+">", c});
return c;
}
if (baseN == 3)
{
Child<3>* c = new Child<3>();
db.insert({string("Child<")+std::to_string(3)+">", c});
return c;
}
return nullptr;
}
// Finder template for registered children
template<int N>
struct findChild
{
// Concrete Type we're matching against
using type = Child<N>;
// Stop the recursion?
static bool stop;
// Compile-time recursion until the correct Child is caught
// Recursion goes UP in N values
static void* castToConcrete(const DB& db, Base* system)
{
if (N > MAX_N_VALUE) stop = true;
if (stop) return nullptr;
if (db.found<type>(string("Child<")+to_string(N)+">"))
{
type* ptr = dynamic_cast<type*>(system);
return static_cast<void*>(ptr);
}
// NOTE: This should jump to the next "compiled" child, not just N+1, but meh;
return findChild<N+1>::castToConcrete(db, system);
}
};
// Activate recursive behaviour for arbitraty N
template<int N>
bool findChild<N>::stop = false;
// Explicit specialization to stop the Compile-time recursion at a decent child
template<>
struct findChild<MAX_N_VALUE+1>
{
using type = Child<MAX_N_VALUE+1>;
static bool stop;
static void* castToConcrete(const DB& t, const Base* system)
{
return nullptr;
}
};
// Disactivate recursive behaviour for N = 11
bool findChild<MAX_N_VALUE+1>::stop = true;
// ------------------ App code
int main()
{
// Create objects database
DB db;
// --- Part 1: Application writers can't write generic-enough code
// Select (from compiled children) a new Base object with N = 2
// and register it to the DB
Base* b = Base::New(2, db);
b->update();
cout << "Access children by explicit dynamic_cast to Child<N>:" << endl;
// Get to the object through the objects DB.
// Child destructor should remove the object from DB too, nut meh again
const auto& oo = db.getObjectRef<Child<2>>("Child<2>");
cout << oo.test().size() << endl;
// --- Part 2: Application writers can write generic code if the compile
// Child<N> for their N
cout << "If Child<N> is polymorphic, we can access the correct child from findChild<0>:" << endl;
// Create a lambda that knows about db, which Base applies on itself
function<void(Base&)> lambda = [&db](Base& base) -> void {
// Cast and ignore the result
void* ptr = findChild<0>::castToConcrete(db, &base);
// Cast back to Child<0>
findChild<0>::type* c = static_cast<findChild<0>::type*>(ptr);
// Now access original Child<N> methods and members from Child<0>
cout << "Method:\n" << c->test().size() << endl;
cout << "Member:\n" << c->member.size() << endl;
};
b->execute(lambda);
return 0;
}
I compiled with GCC 9 with the following options:
-m64 -Wall -Wextra -Wno-unused-parameter -Wold-style-cast -Wnon-virtual-dtor -O0 -fdefault-inline -ftemplate-depth-200
It seems you want inheritance to group not so related classes...
std::variant
(C++17) might be more appropriate:
template<int N>
class Child
{
// Member, N is not the size of matrix, more like the size of a component in matrix
Matrix<N> m_member;
public:
void update();
void execute(std::function<void(Matrix<N>&)> f) { f(m_member); }
};
using Base = std::variant<Child<2>, Child<3>>;
and then:
void foo(Base& obj)
{
struct Visitor {
template <std::size_t N>
void operator()(Child<N>& c) const
{
auto callable = [](Matrix<N>) -> void {/*..*/};
c.execute(callable);
}
} visitor;
std::visit(visitor, obj);
}
To answer to your Edit, whereas your callable take a Base
, you might chain the dynamic_cast
as follow:
template <int N>
void foo_base(Base& b)
{
if (auto* child = dynamic_cast<Child<N>*>(&b)) {
// Job with Child<N>
std::cout << "Method:" << child->test().size() << std::endl;
std::cout << "Member:" << child->member.size() << std::endl;
}
}
template <int... Ns>
void foo_dispatch(std::integer_sequence<int, Ns...>, Base& base)
{
//(foo_base<Ns>(base), ...); // C++17
const int dummy[] = {0, (foo_base<Ns>(base), 0)...};
static_cast<void>(dummy); // Avoid warning about unused variable
}
With a call similar to:
function<void(Base&)> lambda = [](Base& base) {
//foo_dispatch(std::integer_sequence<int, 2, 3>(), base);
foo_dispatch(std::make_integer_sequence<int, MAX_N_VALUE>(), base);
};
(std::integer_sequence
is C++14, but can be implemented in C++11)