I'm trying to make a cryptoscanner but I'm struggling a bit. The code right now can loop through the different coins in symbols.csv and print plots for all of them. The plots include close price, SMA and bollinger bands. Now I really want the close price to be candlesticks and not a line. I've found that there are other plots like mpf to make candlesticks. The problem is that I don't know how to make the bollinger bands work with the mpf plots and I don't know how to make the candlesticks work with matplotlib. Can someone help me making candlesticks in matplotlib orrr make the bollingerbands in the mpf plots.
Thanks in advance!
The graph looks like this right now
import yfinance as yf
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import matplotlib
with open('symbols.csv') as f:
symbols = f.read().splitlines()
for symbol in symbols:
df = yf.download(symbol, start='2020-01-01')
# df = yf.download(symbol, period = '22h', interval = '15m')
print(df)
# df = yf.download('ADA-USD', start='2021-01-01')
df['SMA'] = df.Close.rolling(window=20).mean()
df['stddev'] = df.Close.rolling(window=20).std()
df['Upper'] = df.SMA + 2* df.stddev
df['Lower'] = df.SMA - 2* df.stddev
df['Buy_Signal'] = np.where(df.Lower > df.Close, True, False)
df['Sell_Signal'] = np.where(df.Upper < df.Close, True, False)
buys = []
sells = []
open_pos = False
for i in range(len(df)):
if df.Lower[i] > df.Close[i]:
if open_pos == False:
buys.append(i)
open_pos = True
elif df.Upper[i] < df.Close[i]:
if open_pos:
sells.append(i)
open_pos = False
plt.figure(figsize=(12, 6))
plt.scatter(df.iloc[buys].index, df.iloc[buys].Close, marker = '^', color ='g')
plt.scatter(df.iloc[sells].index, df.iloc[sells].Close, marker = '^', color ='r')
plt.plot(df[['Close', 'SMA', 'Upper', 'Lower']])
plt.fill_between(df.index, df.Upper, df.Lower, color='grey', alpha=0.3)
plt.legend(['Close', 'SMA', 'Upper', 'Lower'])
plt.show()
merged = pd.concat([df.iloc[buys].Close, df.iloc[sells].Close], axis=1)
merged.columns = ['Buys', 'Sells']
print(merged)
totalprofit = merged.shift(-1).Sells - merged.Buys
print(totalprofit)
relprofits = (merged.shift(-1).Sells - merged.Buys) / merged.Buys
print(relprofits.mean())
The links in the comments provide a wealth of examples. Since you want to graph candlesticks, Bollinger Bands, and SMAs in mpf, I have modified the additional plot examples from the previous examples to suit your needs. The graphs were created from data obtained in stocks instead of currencies.
import yfinance as yf
import pandas as pd
import mplfinance as mpf
df = yf.download("AAPL", start="2020-01-01")
df['SMA'] = df.Close.rolling(window=20).mean()
df['stddev'] = df.Close.rolling(window=20).std()
df['Upper'] = df.SMA + 2* df.stddev
df['Lower'] = df.SMA - 2* df.stddev
df['Buy_Signal'] = np.where(df.Lower > df.Close, True, False)
df['Sell_Signal'] = np.where(df.Upper < df.Close, True, False)
tcdf = df[['Lower','Upper','SMA']]
apd = mpf.make_addplot(tcdf)
mpf.plot(df, figratio=(8,4), type='candle', addplot=apd, volume=False, style='yahoo')