Seeking a more efficient solution to my clunky broken one
I have a very large dataframe of all minutely stock data for many symbols. It looks like this df
:
symbol time open high low close volume
0 AEHR 1628656380 652 652 652 652 200
1 AEHR 1628660580 646 646 646 646 100
2 AEHR 1628668380 634 634 634 634 300
3 AEHR 1628668920 606 608 606 608 402
4 AEHR 1628669100 615 615 615 615 100
... ... ... ... ... ... ... ...
4266849 UPST 1631303160 26753 26753 26753 26753 163
4266850 UPST 1631303340 26805 26805 26805 26805 231
4266851 UPST 1631303520 26768 26768 26768 26768 226
4266852 UPST 1631303760 26819 26819 26819 26819 1964
4266853 UPST 1631303940 26899 26899 26899 26899 157
I would like to slice for efficient further processing. I only want to keep data relating to this list of "trades taken" database db_buy
:
Symbol Time
0 AMD 2019-12-12 09:36:00
1 AMD 2020-01-16 09:33:00
2 BITF 2021-08-03 09:47:00
3 DOCN 2021-06-14 09:32:00
4 NVDA 2020-07-29 09:38:00
5 NVDA 2020-09-25 10:34:00
6 UPST 2021-02-09 09:32:00
7 UPST 2021-03-18 09:32:00
I only want to keep the data where
df['symbol']
= df_buy['Symbol']
; and,df['time']
> df_buy['Time']
- BDay(25)
My solutions feels like it could be done in a few lines:
db_buy.sort_index(inplace=True)
no_match = np.nan
# Find start date required for slice
tickers = pd.DataFrame()
tickers['Symbol'] = db_buy['Symbol'].unique()
tickers.sort_index(inplace=True)
print(tickers)
for i, row in tickers.iterrows():
cond = (db_buy['Symbol'] == tickers['Symbol'])
same_symbol = db_buy[cond] # gets df of same tickers ['Symbol', 'Time']
min_date = same_symbol['Time'].min() # returns min value
match = no_match if not cond.any() else min_date
# ^ Returns 'NAN' if cond=false, else match=first row of df which is true
tickers.loc[i, 'Time'] = match
# Get data for stocks in buy list only. Time data starting 25 days prior to buy date to now
cond = (
(df['Symbol'] == tickers['Symbol']) &
(df['Time'] > tickers['Time'] + BDay(-25))
)
df = df[cond]
cond = (db_buy['Symbol'] == tickers['Symbol'])
ValueError: Can only compare identically-labeled Series objects
You can use a simple slicing on combined two conditions:
# ensure datetime type
df['time'] = pd.to_datetime(df['time'], unit='s')
d_buy['Time'] = pd.to_datetime(d_buy['Time'])
# slice data
df[ df['symbol'].isin(d_buy['Symbol'].unique()) # symbol is in Symbol
& df['time'].gt(d_buy['Time'].min()-pd.Timedelta('25d')) # time > min(Time)-25days
]
output:
symbol time open high low close volume
4266849 UPST 2021-09-10 19:46:00 26753 26753 26753 26753 163
4266850 UPST 2021-09-10 19:49:00 26805 26805 26805 26805 231
4266851 UPST 2021-09-10 19:52:00 26768 26768 26768 26768 226
4266852 UPST 2021-09-10 19:56:00 26819 26819 26819 26819 1964
4266853 UPST 2021-09-10 19:59:00 26899 26899 26899 26899 157