I have a date column with different date fomrats. Now I want to validate it with a particular format('MM-dd-yyyy') and which are not matching has to be date formated to the desired one.
df = sc.parallelize([['12-21-2006'],
['05/30/2007'],
['01-01-1984'],
['22-12-2017'],
['12222019']]).toDF(["Date"])
df.show()
+----------+
| Date|
+----------+
|12-21-2006|
|05/30/2007|
|01-01-1984|
|22-12-2017|
| 12222019|
+----------+
Now to validate,
correct=df.filter(~F.col("Date").isNotNull()|
to_date(F.col("Date"),'MM-dd-yyyy').isNotNull())
correct.show()
+----------+
| Date|
+----------+
|12-21-2006|
|01-01-1984|
+----------+
Now, I extracted wrong records which are as follows:-
wrong = df.exceptAll(correct)
wrong.show()
+----------+
| Date|
+----------+
|05/30/2007|
| 12222019|
|22-12-2017|
+----------+
Now these wrong records has to be date formatted to the desired format which is
'MM-dd-yyyy'
If it is single I could have changed the format by specifying that particular format but how do I convert different date format into a desired date format? Is there any solution for this?
You could try out the different time formats in different columns and then take the first non-null value using coalesce:
df.withColumn("d1", F.to_date(F.col("Date"),'MM-dd-yyyy')) \
.withColumn("d2", F.to_date(F.col("Date"),'MM/dd/yyyy')) \
.withColumn("d3", F.to_date(F.col("Date"),'dd-MM-yyyy')) \
.withColumn("d4", F.to_date(F.col("Date"),'MMddyyyy')) \
.withColumn("result", F.coalesce("d1", "d2", "d3", "d4")) \
.show()
Output:
+----------+----------+----------+----------+----------+----------+
| Date| d1| d2| d3| d4| result|
+----------+----------+----------+----------+----------+----------+
|12-21-2006|2006-12-21| null| null| null|2006-12-21|
|05/30/2007| null|2007-05-30| null| null|2007-05-30|
|01-01-1984|1984-01-01| null|1984-01-01| null|1984-01-01|
|22-12-2017| null| null|2017-12-22| null|2017-12-22|
| 12222019| null| null| null|2019-12-22|2019-12-22|
+----------+----------+----------+----------+----------+----------+