I am trying to create distplot of a dataframe grouped by a column
data_plot = creditcard_df.copy()
amount = data_plot['Amount']
data_plot.drop(labels=['Amount'], axis=1, inplace = True)
data_plot.insert(0, 'Amount', amount)
# Plot the distributions of the features
columns = data_plot.iloc[:,0:30].columns
plt.figure(figsize=(12,30*4))
grids = gridspec.GridSpec(30, 1)
for grid, index in enumerate(data_plot[columns]):
ax = plt.subplot(grids[grid])
sns.distplot(data_plot[index][data_plot.Class == 1], hist=False, kde_kws={"shade": True}, bins=20)
sns.distplot(data_plot[index][data_plot.Class == 0], hist=False, kde_kws={"shade": True}, bins=20)
ax.set_xlabel("")
ax.set_title("Distribution of Column: " + str(index))
plt.show()
I tried to use a log scale for the y axis, change the gridspec, and the figsize; but all of those only made a mess of the distributions. Is there a way to make the plots uniform?
seaborn.distplot
is deprecated. Use seaborn.kdeplot
, which is an axes-level plot. Otherwise use seaborn.displot
for a figure-level plot.python 3.11
, pandas 1.5.3
, matplotlib 3.7.1
, seaborn 0.12.2
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
np.random.seed(365)
rows = 10000
data = {'a': np.random.normal(5, 5, rows),
'b': np.random.normal(20, 5, rows),
'c': np.random.normal(35, 5, rows),
'd': np.random.normal(500, 50, rows),
'e': np.random.normal(6500, 500, rows),
'class': np.random.choice([0, 1], size=(rows), p=[0.25, 0.75])}
df = pd.DataFrame(data)
# display(df.head(3))
a b c d e class
0 5.839606 20.807027 34.798230 509.328065 6003.228497 0
1 7.617526 21.691519 40.519995 445.724478 7204.039621 0
2 9.086878 27.193222 32.776264 498.254687 6810.960924 1
seaborn.kdeplot
fig, axes = plt.subplots(nrows=2, ncols=3, figsize=(15, 7), sharex=False, sharey=False)
axes = axes.ravel() # array to 1D
cols = df.columns[:-1] # create a list of dataframe columns to use
for col, ax in zip(cols, axes):
data = df[[col, 'class']] # select the data
sns.kdeplot(data=data, x=col, hue='class', fill=True, ax=ax)
ax.set(title=f'Distribution of Column: {col}', xlabel=None)
fig.delaxes(axes[5]) # delete the empty subplot
fig.tight_layout()
plt.show()
seaborn.displot
# convert the dataframe from wide to long
dfm = df.melt(id_vars='class', var_name='Distribution')
# display(dfm.head(3))
class Distribution value
0 0 a 5.839606
1 0 a 7.617526
2 1 a 9.086878
# plot
sns.displot(kind='kde', data=dfm, col='Distribution', col_wrap=3, x='value', hue='class', fill=True, facet_kws={'sharey': False, 'sharex': False})