In the following picture, I have DataFrame that renders zero after each cycle of operation (the cycle has random length). I want to calculate the average (or perform other operations) for each patch. For example, the average of [0.762, 0.766]
alone, and [0.66, 1.37, 2.11, 2.29]
alone and so forth till the end of the DataFrame.
So I worked with this data :
random_value
0 0
1 0
2 1
3 2
4 3
5 0
6 4
7 4
8 0
9 1
There is probably a way better solution, but here is what I came with :
def avg_function(df):
avg_list = []
value_list = list(df["random_value"])
temp_list = []
for i in range(len(value_list)):
if value_list[i] == 0:
if temp_list:
avg_list.append(sum(temp_list) / len(temp_list))
temp_list = []
else:
temp_list.append(value_list[i])
if temp_list: # for the last values
avg_list.append(sum(temp_list) / len(temp_list))
return avg_list
test_list = avg_function(df=df)
test_list
[Out] : [2.0, 4.0, 1.0]
Edit: since requested in the comments, here is a way to add the means to the dataframe. I dont know if there is a way to do that with pandas (and there might be!), but I came up with this :
def add_mean(df, mean_list):
temp_mean_list = []
list_index = 0 # will be the index for the value of mean_list
df["random_value_shifted"] = df["random_value"].shift(1).fillna(0)
random_value = list(df["random_value"])
random_value_shifted = list(df["random_value_shifted"])
for i in range(df.shape[0]):
if random_value[i] == 0 and random_value_shifted[i] == 0:
temp_mean_list.append(0)
elif random_value[i] == 0 and random_value_shifted[i] != 0:
temp_mean_list.append(0)
list_index += 1
else:
temp_mean_list.append(mean_list[list_index])
df = df.drop(["random_value_shifted"], axis=1)
df["mean"] = temp_mean_list
return df
df = add_mean(df=df, mean_list=mean_list
Which gave me :
df
[Out] :
random_value mean
0 0 0
1 0 0
2 1 2
3 2 2
4 3 2
5 0 0
6 4 4
7 4 4
8 0 0
9 1 1