BertTokenizer
can tokenize a sentence to a list of tokens, where some long words e.g. "embeddings" is splitted to several subwords i.e. 'em', '##bed', '##ding', and '##s'.
Is there a way to locate the subwords? For example,
t = BertTokenizer.from_pretrained('bert-base-uncased')
tokens = t('word embeddings', add_special_tokens=False)
location = locate_subwords(tokens)
I want the location
be like [0, 1, 1, 1, 1]
corresponding to ['word', 'em', '##bed', '##ding', '##s']
, where 0 means normal word, 1 means subword.
The fast tokenizers return a Batchencoding object that has a built-in word_ids:
from transformers import BertTokenizerFast
t = BertTokenizerFast.from_pretrained('bert-base-uncased')
tokens = t('word embeddings are vectors', add_special_tokens=False, return_attention_mask=False, return_token_type_ids=False)
print(tokens.word_ids())
Output:
[0, 1, 1, 1, 1, 2, 3]