I am trying to implement a skeletonization of small images. But I am not getting an expected results. I tried also thin()
and medial_axis()
but nothing seems to work as expected. I am suspicious that this problem occurs because of the small resolutions of images. Here is the code:
import cv2
from numpy import asarray
import numpy as np
# open image
file = "66.png"
img_grey = cv2.imread(file, cv2.IMREAD_GRAYSCALE)
afterMedian = cv2.medianBlur(img_grey, 3)
thresh = 140
# threshold the image
img_binary = cv2.threshold(afterMedian, thresh, 255, cv2.THRESH_BINARY)[1]
# make binary image
arr = asarray(img_binary)
binaryArr = np.zeros(asarray(img_binary).shape)
for i in range(0, arr.shape[0]):
for j in range(0, arr.shape[1]):
if arr[i][j] == 255:
binaryArr[i][j] = 1
else:
binaryArr[i][j] = 0
# perform skeletonization
from skimage.morphology import skeletonize
cv2.imshow("binary arr", binaryArr)
backgroundSkeleton = skeletonize(binaryArr)
# convert to non-binary image
bSkeleton = np.zeros(arr.shape)
for i in range(0, arr.shape[0]):
for j in range(0, arr.shape[1]):
if backgroundSkeleton[i][j] == 0:
bSkeleton[i][j] = 0
else:
bSkeleton[i][j] = 255
cv2.imshow("background skeleton", bSkeleton)
cv2.waitKey(0)
The results are:
I would expect something more like this:
This applies to similar shapes also:
Expectation:
Am I doing something wrong? Or it will truly will not be possible with such small pictures, because I tried skeletonization on bigger images and it worked just fine. Original images:
You could try the skeleton in DIPlib (dip.EuclideanSkeleton
):
import numpy as np
import diplib as dip
import cv2
file = "66.png"
img_grey = cv2.imread(file, cv2.IMREAD_GRAYSCALE)
afterMedian = cv2.medianBlur(img_grey, 3)
thresh = 140
bin = afterMedian > thresh
sk = dip.EuclideanSkeleton(bin, endPixelCondition='three neighbors')
dip.viewer.Show(bin)
dip.viewer.Show(sk)
dip.viewer.Spin()
The endPixelCondition
input argument can be used to adjust how many branches are preserved or removed. 'three neighbors'
is the option that produces the most branches.
The code above produces branches also towards the corners of the image. Using 'two neighbors'
prevents that, but produces fewer branches towards the object as well. The other way to prevent it is to set edgeCondition='object'
, but in this case the ring around the object becomes a square on the image boundary.
To convert the DIPlib image sk
back to a NumPy array, do
sk = np.array(sk)
sk
is now a Boolean NumPy array (values True
and False
). To create an array compatible with OpenCV simply cast to np.uint8
and multiply by 255:
sk = np.array(sk, dtype=np.uint8)
sk *= 255
Note that, when dealing with NumPy arrays, you generally don't need to loop over all pixels. In fact, it's worth trying to avoid doing so, as loops in Python are extremely slow.