Can you please help me to cast the below datatype in pyspark in the better possible way? we cant handle this in the dataframe.
Input:
Aug 11, 2020 04:34:54.0 PM
to expected output:
2020-08-11 04:34:54:00 PM
Try with from_unixtime, unix_timestamp
functions.
Example:
#sample data in dataframe
df.show(10,False)
#+--------------------------+
#|ts |
#+--------------------------+
#|Aug 11, 2020 04:34:54.0 PM|
#+--------------------------+
df.withColumn("dt",from_unixtime(unix_timestamp(col("ts"),"MMM d, yyyy hh:mm:ss.SSS a"),"yyyy-MM-dd hh:mm:ss.SSS a")).\
show(10,False)
#+--------------------------+--------------------------+
#|ts |dt |
#+--------------------------+--------------------------+
#|Aug 11, 2020 04:34:54.0 PM|2020-08-11 04:34:54.000 PM|
#+--------------------------+--------------------------+
If you want new column to be timestamp type then use to_timestamp
function in spark.
df.withColumn("dt",to_timestamp(col("ts"),"MMM d, yyyy hh:mm:ss.SSS a")).\
show(10,False)
#+--------------------------+-------------------+
#|ts |dt |
#+--------------------------+-------------------+
#|Aug 11, 2020 04:34:54.0 PM|2020-08-11 16:34:54|
#+--------------------------+-------------------+
df.withColumn("dt",to_timestamp(col("ts"),"MMM d, yyyy hh:mm:ss.SSS a")).printSchema()
#root
# |-- ts: string (nullable = true)
# |-- dt: timestamp (nullable = true)