I making an API call with the following code:
req = urllib.request.Request(url, body, headers)
try:
response = urllib.request.urlopen(req)
string = response.read().decode('utf-8')
json_obj = json.loads(string)
Which returns the following:
{"forecast": [17.588294043898163, 17.412641963452206],
"index": [
{"SaleDate": 1629417600000, "Type": "Type 1"},
{"SaleDate": 1629504000000, "Type": "Type 2"}
]
}
How can I convert this api response to a Panda DataFrame to convert the dict in the following format in pandas dataframe
Forecast SaleDate Type
17.588294043898163 2021-08-16 Type 1
17.412641963452206 2021-08-17 Type 1
You can use the following. It uses pandas.Series
to convert the dictionary to columns and pandas.to_datetime
to map the correct date from the millisecond timestamp:
d = {"forecast": [17.588294043898163, 17.412641963452206],
"index": [
{"SaleDate": 1629417600000, "Type": "Type 1"},
{"SaleDate": 1629504000000, "Type": "Type 2"}
]
}
df = pd.DataFrame(d)
df = pd.concat([df['forecast'], df['index'].apply(pd.Series)], axis=1)
df['SaleDate'] = pd.to_datetime(df['SaleDate'], unit='ms')
output:
forecast SaleDate Type
0 17.588294 2021-08-20 Type 1
1 17.412642 2021-08-21 Type 2