After filtering out the inverse duplicates, I have to count how many actual duplicates there are. Here is my (working example) code, it's too slow though, for 90 000+ rows.. using iterrows:
import pandas as pd
data = {'id_x':[1,2,3,4,5,6],
'ADDICTOID_x':['BFO:0000023', 'MF:0000016', 'BFO:0000023', 'MF:0000016', 'MF:0000016', 'ADDICTO:0000872'],
'PMID':[34116904, 34116904, 34112174, 34112174, 34112174, 22429780],
'LABEL_x':['role', 'human being', 'role', 'human being', 'human being', 'FDA'],
'id_y':[11,12,13,14,15,16],
'ADDICTOID_y':['MF:0000016', 'BFO:0000023', 'MF:0000016', 'BFO:0000023', 'BFO:0000023', 'ADDICTO:0000904'],
'LABEL_y':['human being', 'role', 'human being', 'role', 'role', '']}
dcp = pd.DataFrame(data)
dcp = dcp.drop(dcp[dcp.LABEL_x == dcp.LABEL_y].index)
for index, row in dcp.iterrows(): # THIS IS SLOW
if ((dcp['ADDICTOID_x'] == row['ADDICTOID_y'])
& (dcp['ADDICTOID_y'] == row['ADDICTOID_x'])
& (dcp['PMID'] == row['PMID'])).any(): # Does the inverse of this row exist in the table?
dcp.drop(index, inplace=True)
print("dcp after drop: ")
print(dcp)
I can't just use dcp.duplicated(subset=['ADDICTOID_x', 'ADDICTOID_y'], keep='first')
because that removes ALL of the duplicates (there are many) and I only want to do them one by one, and the 'PMID' needs to match also. Similarly, (dcp.ADDICTOID_x + dcp.ADDICTOID_y).isin(dcp.ADDICTOID_y + dcp.ADDICTOID_x) & (dcp.PMID == dcp.PMID)
finds rows with duplicates everywhere. Iterrows and test one by one is the only way I have found which works, but it's too slow. Anyone know of a solution to this?
After filtering for inverse duplicates, I count like so:
data_chord_plot = dcp.groupby(['LABEL_x', 'LABEL_y'], as_index=False)[['PMID']].count() data_chord_plot.columns = ['source','target','value']
EDIT: in this simple example, rows 1 and 3 are removed as they are inverse duplicates of rows 2 and 4.
EDIT: I need to eliminate the "mirror" image of rows with inverse duplicates over the two columns, but only one for each row with a duplicate. Some rows don't have a mirror image.
CORRECT OUTPUT FROM (SLOW) EXAMPLE:
id_x ADDICTOID_x PMID LABEL_x id_y ADDICTOID_y LABEL_y
1 2 MF:0000016 34116904 human being 12 BFO:0000023 role
3 4 MF:0000016 34112174 human being 14 BFO:0000023 role
4 5 MF:0000016 34112174 human being 15 BFO:0000023 role
5 6 ADDICTO:0000872 22429780 FDA 16 ADDICTO:0000904
Create a sorted tuple of ADDICTOID_xy
and use drop_duplicates
with the right subset:
dcp['ADDICTOID'] = dcp[['ADDICTOID_x', 'ADDICTOID_y']].apply(sorted, axis=1) \
.apply(tuple)
out = dcp.drop_duplicates(subset=['ADDICTOID', 'PMID'], keep='first')
>>> out
id_x ADDICTOID_x PMID LABEL_x id_y ADDICTOID_y LABEL_y ADDICTOID
0 1 BFO:0000023 34116904 role 11 MF:0000016 human being (BFO:0000023, MF:0000016)
2 3 BFO:0000023 34112174 role 13 MF:0000016 human being (BFO:0000023, MF:0000016)
5 6 ADDICTO:0000872 22429780 FDA 16 ADDICTO:0000904 (ADDICTO:0000872, ADDICTO:0000904)