Hi and thank you in advance for any suggestions here! My question is using nls()
how can I
find the best optimal fit amongst the other fits-- ie linear and non linear-- for my data and
show the fit on the ggplot graph below?
library(ggplot2)
library(mosiac)
library(tidyverse)
library(dplyr)
# data frame
FX <- data.frame(Location=c(1:5), mi=c(1, 4, 16, 16^2,256^2))
#Visual
ggplot(FX,aes(x=Location, y=mi))+
geom_line(alpha=0.9, color="red")
# nls(). It shows error of Error in nls(mi ~ Location, data = FX, start = list(mi = 1,
#Location = 1)) :
#no parameters to fit
nls(mi~Location,data=FX,start=list(mi=1,Location=1))
You need to include adjustable parameters for your equation in the nls()
function.
FX <- data.frame(Location=c(1:5), mi=c(1, 4, 16, 16^2,256^2))
nls(mi~a+Location^b, data=FX, start=list(a=1, b=4))
# Nonlinear regression model
# model: mi ~ a + Location^b
# data: FX
# a b
# -3573.540 6.906
# residual sum-of-squares: 142513083
#
# Number of iterations to convergence: 8
# Achieved convergence tolerance: 6.011e-06