I read in Programming in Scala section 23.5 that map, flatMap and filter operations can always be converted into for-comprehensions and vice-versa.
We're given the following equivalence:
def map[A, B](xs: List[A], f: A => B): List[B] =
for (x <- xs) yield f(x)
I have a value calculated from a series of map operations:
val r = (1 to 100).map{ i => (1 to 100).map{i % _ == 0} }
.map{ _.foldLeft(false)(_^_) }
.map{ case true => "open"; case _ => "closed" }
I'm wondering what this would look like as a for-comprehension. How do I translate it?
(If it's helpful, in words this is:
I imagine there is a standard way to translate map operations and the details of the actual functions in them is not important. I could be wrong though.)
Is this the kind of translation you're looking for?
for (i <- 1 to 100;
val x = (1 to 100).map(i % _ == 0);
val y = x.foldLeft(false)(_^_);
val z = y match { case true => "open"; case _ => "closed" })
yield z
If desired, the map
in the definition of x
could also be translated to an "inner" for-comprehension.
In retrospect, a series of chained map
calls is sort of trivial, in that you could equivalently call map
once with composed functions:
s.map(f).map(g).map(h) == s.map(f andThen g andThen h)
I find for-comprehensions to be a bigger win when flatMap
and filter
are involved. Consider
for (i <- 1 to 3;
j <- 1 to 3 if (i + j) % 2 == 0;
k <- 1 to 3) yield i ^ j ^ k
versus
(1 to 3).flatMap { i =>
(1 to 3).filter(j => (i + j) % 2 == 0).flatMap { j =>
(1 to 3).map { k => i ^ j ^ k }
}
}