I have a dataset:
I want to visualise this dataset in a stacked-and-grouped bar chart using Plotly. Unfortunately, Plotly does not have this type of charts yet, but there is this workaround that I tried.
My code:
sv_clusters = ["cluster_1", "cluster_2", "cluster_3", "cluster_4", "cluster_5", "cluster_6", "cluster_7"]
sv_data = sv_data[["Population", "Sample_name"] + sv_clusters]
for r in sv_clusters:
fig.add_trace(
go.Bar(
x=[sv_data.Population, sv_data.Sample_name],
y=sv_data[r],
name=r,
marker=dict(
line_width=0)),
)
fig.update_layout(
template="simple_white",
xaxis=dict(title_text=None),
yaxis=dict(title_text="fraction"),
width=2000,
bargap=0,
title='Alles',
barmode="stack",
Now my plot looks like this:
I want to remove the x-label ticks, since it clutters the chart (sample names not the population names). So I tried showticklabels=False
, which resulted in this:
Which removes all x-axis labels.
How do I remove the sample name tick labels?
import requests
import pandas as pd
import numpy as np
import plotly.graph_objects as go
# generate some data... similar to what was presented
sv_data = pd.DataFrame(
{
"Population": pd.json_normalize(
requests.get("https://restcountries.eu/rest/v2/all").json()
)["subregion"].unique()
}
).loc[0:6,].assign(
Sample_name=lambda d: d["Population"]
.str[:2]
.str.upper()
.apply(lambda s: [f"{s}{i}" for i in range(1500, 1550)])
).explode(
"Sample_name"
).assign(**{f"cluster_{i}":lambda d: np.random.uniform(0,1, len(d)) for i in range(1,8)})
sv_clusters = ["cluster_1", "cluster_2", "cluster_3", "cluster_4", "cluster_5", "cluster_6", "cluster_7"]
sv_data = sv_data[["Population", "Sample_name"] + sv_clusters]
fig=go.Figure()
# instead of categoricals use concatenated value for x, define text to hover works
for r in sv_clusters:
fig.add_trace(
go.Bar(
x=sv_data.loc[:,["Population","Sample_name"]].apply(lambda r: " ".join(r), axis=1),
y=sv_data[r],
text=sv_data.loc[:,["Population","Sample_name"]].apply(lambda r: " ".join(r), axis=1),
name=r,
marker=dict(
line_width=0)),
)
# given simple x, set tick vals as wanted
fig.update_layout(
template="simple_white",
yaxis=dict(title_text="fraction"),
width=2000,
bargap=0,
title='Alles',
barmode="stack",
xaxis={"tickmode":"array", "tickvals":sv_data.loc[:,["Population","Sample_name"]].apply(lambda r: " ".join(r), axis=1),
"ticktext":np.where(sv_data["Population"]==sv_data["Population"].shift(), "", sv_data["Population"])}
)