I want to search for a value (from one dataframe) in another dataframe in dependency of the date.
I have a Dataframe with DatetimeIndex based on a frequency of 1 minute. I resampled the Dataframe to a frequency of 5min and daily. This is the code and the output:
agg_dict = {'open': 'first','high': 'max','low': 'min','cls': 'last','vol': 'sum'}
data_5min = data_rth.resample('5min').agg(agg_dict).dropna().round(2).sort_index(ascending=False)
data_daily = data_rth.resample('D').agg(agg_dict).dropna().round(2).sort_index(ascending=False)
data_weekly= data_rth.resample('W').agg(agg_dict).dropna().round(2).sort_index(ascending=False)
data_monthly= data_rth.resample('M').agg(agg_dict).dropna().round(2).sort_index(ascending=False)
print('data_daily','\n',data_daily['high'].head())
print('data_5min','\n',data_5min['high'].head(24))
output:
data_daily
time
2021-08-05 441.85
2021-08-04 441.12
2021-08-03 441.28
2021-08-02 440.93
2021-07-30 440.06
Name: high, dtype: float64
data_5min
time
2021-08-05 16:00:00 441.85
2021-08-05 15:55:00 441.65
2021-08-05 15:50:00 441.39
2021-08-05 15:45:00 441.23
2021-08-05 15:40:00 441.24
2021-08-05 15:35:00 441.11
2021-08-05 15:30:00 440.90
2021-08-05 15:25:00 440.83
2021-08-05 15:20:00 440.78
2021-08-05 15:15:00 440.86
2021-08-05 15:10:00 440.94
2021-08-05 15:05:00 440.96
2021-08-05 15:00:00 440.89
2021-08-05 14:55:00 440.83
2021-08-05 14:50:00 440.87
2021-08-05 14:45:00 440.88
2021-08-05 14:40:00 440.96
2021-08-05 14:35:00 440.88
2021-08-05 14:30:00 440.86
2021-08-05 14:25:00 440.91
2021-08-05 14:20:00 440.96
2021-08-05 14:15:00 440.96
2021-08-05 14:10:00 440.98
2021-08-05 14:05:00 441.12
Name: high, dtype: float64
I want to look now where the high of each day shows in the 5min Frame. I tried
data_5min['high'].isin(data_daily['high'])
what gives me this output:
time
2021-08-05 16:00:00 True
2021-08-05 15:55:00 False
2021-08-05 15:50:00 False
2021-08-05 15:45:00 False
2021-08-05 15:40:00 False
2021-08-05 15:35:00 False
2021-08-05 15:30:00 False
2021-08-05 15:25:00 False
2021-08-05 15:20:00 False
2021-08-05 15:15:00 False
2021-08-05 15:10:00 False
2021-08-05 15:05:00 False
2021-08-05 15:00:00 False
2021-08-05 14:55:00 False
2021-08-05 14:50:00 False
2021-08-05 14:45:00 False
2021-08-05 14:40:00 False
2021-08-05 14:35:00 False
2021-08-05 14:30:00 False
2021-08-05 14:25:00 False
2021-08-05 14:20:00 False
2021-08-05 14:15:00 False
2021-08-05 14:10:00 False
2021-08-05 14:05:00 True
The True in the last line I dont want. It seems that this is the value at data_daily index 2021-08-04. What I want is to search every value from data_daily in the data_5min but depending on the dates. I tried
data_5min['high'].isin(data_daily['high']) & data_5min.index.isin(data_daily.index.date)
But I don't get it to work.
Any help would be nice.
You can use only data_5m
to find the peak of each day using groupby
and the .date
part of DatetimeIndex
:
>>> data_5min.groupby(data_5min.index.date)['high'].idxmax()
time
2021-08-05 2021-08-05 16:00:00
Freq: D, Name: high, dtype: datetime64[ns]