I have been trying to insert $e^ix$ as matrix element. The main aim is to find the eigenvalue of a matrix which has many complex functions as elements. Can anyone help me how to insert it? My failed attempt is below:
for i in range(0,size):
H[i,i]=-2*(cmath.exp((i+1)*aj))
H[i,i+1]=1.0
H[i,i-1]=1.0
'a' is defined earlier in the program. The error flagged shows that aj is not defined. Using cmath I thought a complex number can be expontiated as (x+yj). Unfortunately, I couldn't figure out the right way to use it. Any help would be appreciated
Define a small float array:
In [214]: H = np.eye(3)
In [215]: H
Out[215]:
array([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]])
Create a complex number:
In [216]: 1+3j
Out[216]: (1+3j)
In [217]: np.exp(1+3j)
Out[217]: (-2.6910786138197937+0.383603953541131j)
Trying to assign it to H
:
In [218]: H[1,1]=np.exp(1+3j)
<ipython-input-218-6c0b228d2833>:1: ComplexWarning: Casting complex values to real discards the imaginary part
H[1,1]=np.exp(1+3j)
In [219]: H
Out[219]:
array([[ 1. , 0. , 0. ],
[ 0. , -2.69107861, 0. ],
[ 0. , 0. , 1. ]])
Now make an complex dtype array:
In [221]: H = np.eye(3).astype( complex)
In [222]: H[1,1]=np.exp(1+3j)
In [223]: H
Out[223]:
array([[ 1. +0.j , 0. +0.j ,
0. +0.j ],
[ 0. +0.j , -2.69107861+0.38360395j,
0. +0.j ],
[ 0. +0.j , 0. +0.j ,
1. +0.j ]])
For an array of values:
In [225]: a = np.array([1,2,3])
In [226]: np.exp(a+1j*a)
Out[226]:
array([ 1.46869394+2.28735529j, -3.07493232+6.7188497j ,
-19.88453084+2.83447113j])
In [228]: H[:,0]=np.exp(a+1j*a)
In [229]: H
Out[229]:
array([[ 1.46869394+2.28735529j, 0. +0.j ,
0. +0.j ],
[ -3.07493232+6.7188497j , -2.69107861+0.38360395j,
0. +0.j ],
[-19.88453084+2.83447113j, 0. +0.j ,
1. +0.j ]])