I have a column dt["startDateEST"]
that ouputs as:
0 2021-07-27 21:46:00-04:00
1 2021-07-27 21:46:00-04:00
2 2021-07-27 19:06:00-04:00
3 2021-07-27 19:06:00-04:00
4 2021-07-27 19:11:00-04:00
...
79 2021-07-27 19:11:00-04:00
80 2021-07-27 19:11:00-04:00
81 2021-07-27 19:11:00-04:00
82 2021-07-27 19:11:00-04:00
83 2021-07-27 19:06:00-04:00
Name: startDateEST, Length: 84, dtype: datetime64[ns, America/New_York]
I'm trying to create a new column dt["startDateEST_Long"]
that is dt["startDateEST"]
converted to word format as:
0 Jul 27, 2021, 9:46 PM
1 Jul 27, 2021, 9:46 PM
2 Jul 27, 2021, 7:06 PM
3 Jul 27, 2021, 7:06 PM
4 Jul 27, 2021, 7:11 PM
etc...
I've tried different versions of datetime functions and converting to a string object (.tolist)/parsing through but can't anything to work or run without a Series/attribute error. Please help, thank you!!
First create some sample data:
dates = pd.date_range("2021-07-27", periods=48, freq="H").tz_localize("America/New_York")
Then fill the DataFrame
dt = pd.DataFrame({"startDateEST": dates})
Have a look at python datetime formatting strings and format accordingly
dt["startDateEST_Long"] = dt["startDateEST"].dt.strftime('%b %d, %Y, %I:%M%p')
dt.head()
0 2021-07-27 00:00:00-04:00 Jul 27, 2021, 12:00AM
1 2021-07-27 01:00:00-04:00 Jul 27, 2021, 01:00AM
2 2021-07-27 02:00:00-04:00 Jul 27, 2021, 02:00AM
3 2021-07-27 03:00:00-04:00 Jul 27, 2021, 03:00AM
4 2021-07-27 04:00:00-04:00 Jul 27, 2021, 04:00AM