I have a Spark DataFrame with the a single column 'value', whereby each row is an Array of equal length. How can I explode this single 'value' column into multiple columns, which follow a schema like this?
val bronzeDfSchema = new StructType()
.add("DATE", IntegerType)
.add("NUMARTS", IntegerType)
.add("COUNTS", StringType)
.add("THEMES", StringType)
.add("LOCATIONS", StringType)
.add("PERSONS", StringType)
.add("ORGANIZATIONS", StringType)
.add("TONE", StringType)
.add("CAMEOEVENTIDS", StringType)
.add("SOURCES", StringType)
.add("SOURCEURLS", StringType)
Thank you!
This should work just fine
val schema=Seq(("DATE",0),("NUMARTS",1),("COUNTS",2),("THEMES",3),("LOCATIONS",4),("PERSONS",5),("ORGANIZATIONS",6),("TONE",7),("CAMEOEVENTIDS",8),("SOURCES",9),("SOURCEURLS",10))
val df2=schema.foldLeft(df)((df,x)=>df.withColumn(x._1,col("value").getItem(x._2)))
After you do this just cast the column into the data type you want.