@pd.api.extensions.register_dataframe_accessor("data_cleaner")
class DataCleaner:
def __init__(self, pandas_obj):
self._obj = pandas_obj
def multiply(self, col):
self._obj[col] = self._obj[col] * self._obj[col]
return self._obj
def square(self, col):
self._obj[col] = self._obj[col]**2
return self._obj
def add_strings(self, col):
self._obj[col] = self._obj[col] + self._obj[col]
return self._obj
def process_all(self):
self._obj.pipe(
self.multiply(col='A'),
self.square(col='B')
self.add_strings(col='C')
)
class DataProcessor(DataCleaner):
data = [
[1, 1.5, "AABB"],
[2, 2.5, "BBCC"],
[3, 3.5, "CCDD"],
[4, 4.5, "DDEE"],
[5, 5.5, "EEFF"],
[6, 6.5, "FFGG"],
]
def __init__(self):
self.df = pd.DataFrame(data=DataProcessor.data, columns=['A', 'B', 'C'])
def get_data(self):
return self.df
def clean_the_df(self, obj):
obj = obj.data_cleaner.multiply(col='A')
obj = obj.data_cleaner.square(col='B')
obj = obj.data_cleaner.add_strings(col='C')
return obj
def process_all(self, obj):
obj = obj.data_cleaner.process_all()
if __name__ == '__main__':
data = DataProcessor().get_data()
# this works
print(DataProcessor().clean_the_df(data))
# this does not work
print(DataProcessor().process_all(data))
I want to use pandas .pipe()
function with the dataframe accessor to chain methods together. In the DataCleaner
class I have a method process_all
that contains other cleaning methods inside the class. I want to chain them together and process the dataframe with multiple methods in one go.
It would be nice to keep this chaining method inside the DataCleaner
class so all I have to do is call it one time from another Class or file, e.g. process_all
inside DataProcessor
.
That way I do not have to individually write out each method to process the dataframe one at a time, for example in DataProcessor.clean_the_df()
.
The problem is that process_all
is complaining: TypeError: 'DataFrame' object is not callable
So my question is, how do I use the pandas dataframe accessor, self.obj
, with .pipe()
to chain together multiple cleaning methods inside one function so that I can call that function from another class and process a dataframe with multiple methods in one go?
Desired output with process_all
:
A B C
0 1 2.25 AABBAABB
1 4 6.25 BBCCBBCC
2 9 12.25 CCDDCCDD
3 16 20.25 DDEEDDEE
4 25 30.25 EEFFEEFF
5 36 42.25 FFGGFFGG
The question here is that .pipe
expects a function that takes a DataFrame, a Series, or a GroupBy object. The documentation is quite clear with regards to that: https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.pipe.html. On top of that, the DataCleaner.process_all
function is not implementing .pipe
correctly. In order to chain several functions, the expected syntax is:
>>>(df.pipe(h)
... .pipe(g, arg1=a)
... .pipe(func, arg2=b, arg3=c)
... )
which is equivalent to
>>>func(g(h(df), arg1=a), arg2=b, arg3=c)
In order to combine the data frame accessor with .pipe
you need to define static methods within your DataCleaner
class that take a DataFrame and a column as arguments. Here is an example that fixes your problem:
@pd.api.extensions.register_dataframe_accessor("data_cleaner")
class DataCleaner:
def __init__(self, pandas_obj):
self._obj = pandas_obj
@staticmethod
def multiply(df, col):
df[col] = df[col] * df[col]
return df
@staticmethod
def square(df, col):
df[col] = df[col]**2
return df
@staticmethod
def add_strings(df, col):
df[col] = df[col] + df[col]
return df
def process_all(self):
self._obj = (self._obj.pipe(self.multiply, col='A')
.pipe(self.square, col='B')
.pipe(self.add_strings, col='C'))
return self._obj
class DataProcessor(DataCleaner):
data = [
[1, 1.5, "AABB"],
[2, 2.5, "BBCC"],
[3, 3.5, "CCDD"],
[4, 4.5, "DDEE"],
[5, 5.5, "EEFF"],
[6, 6.5, "FFGG"],
]
def __init__(self):
self.df = pd.DataFrame(data=DataProcessor.data, columns=['A', 'B', 'C'])
def get_data(self):
return self.df
def clean_the_df(self, obj):
obj = obj.data_cleaner.multiply(obj, col='A') # modified to use static method
obj = obj.data_cleaner.square(obj, col='B')
obj = obj.data_cleaner.add_strings(obj, col='C')
return obj
def process_all(self, obj):
obj = obj.data_cleaner.process_all()
return obj
Using this code, running this should yield:
>>>data = data = DataProcessor().get_data()
>>>print(DataProcessor().process_all(data))
A B C
0 1 2.25 AABBAABB
1 4 6.25 BBCCBBCC
2 9 12.25 CCDDCCDD
3 16 20.25 DDEEDDEE
4 25 30.25 EEFFEEFF
5 36 42.25 FFGGFFGG