Basically I'm trying to make a trait that indicates the ability to be converted into a 2D ndarray
aka ndarray::Array2
:
trait Into2DArray{
fn to_array(&self) -> Array2<f64>;
}
I would like to do this by expanding the existing AsArray
trait, but Rust forbids me from implementing a third party trait for a third party struct (polars::DataFrame
) for some esoteric reason, so instead I have to make my own trait for this.
Anyway, this works well for polars::DataFrame
:
impl Into2DArray for DataFrame {
fn to_array(&self) -> Array2<f64> {
return self.to_array();
}
}
However, I also want to implement this for anything that is already convertable into a 2D array, so I implement this trait for the AsArray
trait mentioned above:
impl Into2DArray for AsArray<'_, f64, Ix2> {
fn to_array(&self) -> Array2<f64> {
return self.into();
}
}
However the compiler gives me grief for this:
|
26 | impl Into2DArray for AsArray<'_, f64, Ix2> {
| ^^^^^^^^^^^^^^^^^^^^^ `AsArray` cannot be made into an object
|
= note: the trait cannot be made into an object because it requires `Self: Sized`
= note: for a trait to be "object safe" it needs to allow building a vtable to allow the call to be resolvable dynamically; for more information visit <https://doc.rust-lang.org/reference/items/traits.html#object-safety>
I understand that has something to do with object safety but I thought I had fulfilled all the criteria mentioned on that page, namely the trait doesn't return Self
, and all the generic parameters of AsArray
are specified.
What is going wrong, and how can I fix it?
What you were trying to do is implementing the Into2DArray
trait for the AsArray
dynamic trait object. There should have been a warning of using AsArray
without dyn
anyway.
But this is not what you actually want. You want to implement it for any type that implements AsArray
. Just like you did in your comment.
It is important to know the difference between these two things:
trait NeedThis {
fn can_be_called_by_the_impl(&self) {}
}
trait ToDoThis {
fn example(&self);
}
impl ToDoThis for dyn NeedThis {
fn example(&self) {
self.can_be_called_by_the_impl()
}
}
impl NeedThis for u8 {}
fn main() {
let num: u8 = 0;
// num.example(); // doesn't work because ToDoThis is not implemented for u8
let num_as_trait_obj: &dyn NeedThis = &0_u8 as &dyn NeedThis;
num_as_trait_obj.example(); // works because this time it is a trait object
}
trait NeedThis {
fn can_be_called_by_the_impl(&self) {}
}
trait ToDoThis {
fn example(&self);
}
// removing ?Sized would make it the same as T: NeedThis + Sized
impl<T: NeedThis + ?Sized> ToDoThis for T {
fn example(&self) {
self.can_be_called_by_the_impl()
}
}
impl NeedThis for u8 {}
fn main() {
let num: u8 = 0_u8;
num.example(); // works because we implemented it for all types that implement NeedThis
let num_as_trait_obj: &dyn NeedThis = &0_u8 as &dyn NeedThis;
num_as_trait_obj.example(); // works because dyn NeedThis also implements NeedThis.
// This is only true because we added ?Sized to the bounds of the impl block.
// Otherwise it doesn't work because dyn NeedThis is not actually Sized.
// And a Sized bound is implied by default.
}