I am trying to develop a prediction model using XGBoost. My basic idea is to develop an automated prediction model which uses the top 10 important features derived from the dataset (700+ rows and 90+columns) and use them for prediction of values.
The input data is updated weekly and hence the predictions for the next week should be predicted using current week values. I have extracted important features from my XGBoost model but am unable to automate the same due to the error.
import xgboost as xgb
from sklearn.metrics import mean_squared_error
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=100)
eval_set = [(X_train, y_train), (X_test, y_test)]
xg_reg = MyXGBRegressor(objective ='reg:squarederror', colsample_bytree = 0.3, learning_rate = 0.01,max_depth = 6, reg_alpha = 15, n_estimators = 1000, subsample = 0.5)
predictions = xg_reg.fit(X_train,y_train, early_stopping_rounds=30, eval_metric=["rmse", "mae"], eval_set=eval_set, verbose=True)
The above code helps me run the regressor and predict values. The following code throws an error.
import xgboost as xgb
from xgboost import XGBRegressor
class MyXGBRegressor(XGBRegressor):
@property
def coef_(self):
return None
thresholds = np.sort(xg_reg.feature_importances_)
from sklearn.feature_selection import SelectFromModel
for thresh in thresholds:
selection = SelectFromModel(xg_reg, threshold=thresh, prefit = True)
selected_dataset = selection.transform(X_test)
feature_idx = selection.get_support()
feature_name = X.columns[feature_idx]
selected_dataset = pd.DataFrame(selected_dataset)
selected_dataset.columns = feature_name
The error is as follows:
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-11-a42c3ed80da2> in <module>
3 for thresh in thresholds:
4 selection = SelectFromModel(xg_reg, threshold=thresh, prefit = True)
----> 5 selected_dataset = selection.transform(X_test)
6
7 feature_idx = selection.get_support()
~\Anaconda3\lib\site-packages\sklearn\feature_selection\_base.py in transform(self, X)
86 force_all_finite=not _safe_tags(self, key="allow_nan"),
87 )
---> 88 mask = self.get_support()
89 if not mask.any():
90 warn("No features were selected: either the data is"
~\Anaconda3\lib\site-packages\sklearn\feature_selection\_base.py in get_support(self, indices)
50 values are indices into the input feature vector.
51 """
---> 52 mask = self._get_support_mask()
53 return mask if not indices else np.where(mask)[0]
54
~\Anaconda3\lib\site-packages\sklearn\feature_selection\_from_model.py in _get_support_mask(self)
186 ' "prefit=True" while passing the fitted'
187 ' estimator to the constructor.')
--> 188 scores = _get_feature_importances(
189 estimator=estimator, getter=self.importance_getter,
190 transform_func='norm', norm_order=self.norm_order)
~\Anaconda3\lib\site-packages\sklearn\feature_selection\_base.py in _get_feature_importances(estimator, getter, transform_func, norm_order)
189 return importances
190 elif transform_func == "norm":
--> 191 if importances.ndim == 1:
192 importances = np.abs(importances)
193 else:
AttributeError: 'NoneType' object has no attribute 'ndim'
The problem is that the coef_
attribute of MyXGBRegressor
is set to None
. If you use XGBRegressor
instead of MyXGBRegressor
then SelectFromModel
will use the feature_importances_
attribute of XGBRegressor
and your code will work.
import numpy as np
from xgboost import XGBRegressor
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split
from sklearn.feature_selection import SelectFromModel
# generate some data
X, y = make_regression(n_samples=1000, n_features=5, random_state=100)
# split the data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=100)
# instantiate the model
model = XGBRegressor(objective="reg:squarederror", colsample_bytree=0.3, learning_rate=0.01, max_depth=6, reg_alpha=15, n_estimators=1000, subsample=0.5)
# fit the model
model.fit(X_train, y_train, early_stopping_rounds=30, eval_metric=["rmse", "mae"], eval_set=[(X_train, y_train), (X_test, y_test)], verbose=True)
# extract the feature importances
thresholds = np.sort(model.feature_importances_)
# select the features
selection = SelectFromModel(model, threshold=thresholds[2], prefit=True)
feature_idx = selection.get_support()
print(feature_idx)
# array([ True, True, True, False, False])
selected_dataset = selection.transform(X_test)
print(selected_dataset.shape)
# (200, 3)