I am looking for the most simple protocol to program a remote function call, e.g. from Matlab to Julia.
[out1, out2, ...] = jlcall(socket, fname, arg1, arg2, ...);
fname is a string, all other input and output variables are numerical arrays (or other structures known to both sides) on Linux, Windows as option.
The solutions I've seen (tcp, zmq) were built with old versions and do no longer work.
Protocol could (should?) be limited to do the pack/transmit - receive/unpack work.
UPDATE
Here is what I have come up with using pipes:
function result = jlcall(varargin)
% result = jlcall('fname', arg1, arg2, ...)
% call a Julia function with arguments from Matlab
if nargin == 0 % demo
task = {'foo', 2, 3}; % demo fun, defined in jsoncall.jl
else
task = varargin;
end
% create pipe and write function and parameter(s) to pipe
pipename = tempname;
pipe = java.io.FileOutputStream(pipename);
pipe.write(uint8(jsonencode(task)));
pipe.close;
% run Julia and read result back
system(sprintf('julia jsoncall.jl %s', unixpath(pipename)))
fid = fopen(pipename, 'r');
c = fread(fid);
result = jsondecode(char(c'));
fclose(fid);
function path_unix = unixpath(path_pc)
%convert path to unix version
path_unix = path_pc;
path_unix(strfind(path_unix,'\'))='/';
# jsoncall.jl
using JSON3 # get JSON3.jl from repository first
function foo(a,b) # demo function
a+b, a*b
end
jsonfile = ARGS[1] # called as > julia jsoncall.jl <json_cmdfile>
io = open(jsonfile, "r") # open IOStream for read
data = read(io) # read UTF8 data from stream
close(io) # close stream
cmd = JSON3.read(String(data)) # unpack stream into [fun, farg] array
fun = Symbol(cmd[1]) # first element is Julia function name,
result = @eval $fun(cmd[2:end]...) # others are function arguments
io = open(jsonfile, "w") # open IOStream for write
write(io, JSON3.write(result)) # (over-)write result back to stream
close(io) # close stream
Open points:
Your comments are welcome!
Here is a stripped down way of doing it. If you are going to vary your functions and arguments, a REST as in the comments server is going to be more flexible and less likely to pose a security risk (as you are eval()ing arbitrary code in some cases).
#server code
using Sockets
const port = 6001
const addr = ip"127.0.0.1"
const server = listen(addr, port)
while true
try
@info "Server on $port awaiting request..."
sock = accept(server)
@info "Server connected."
msg = strip(readline(sock))
@info "got message $msg"
fstr, argstr = split(msg, limit=2)
x = parse(Float64, argstr) # or other taint checks here...
ans = eval(Meta.parse(fstr * "($x)"))
@info "server answer: $ans"
write(sock, "$ans\n")
catch y
@info "exiting on condition: $y"
end
end
# client code
using Sockets
port = 6001
server = ip"127.0.0.1"
sock = connect(server, port)
@info "Client connected to $server"
func = "sinpi"
x = 0.5
@info "starting send"
write(sock, "$func $x\n")
flush(sock)
@info "flushed send"
msg = strip(readline(sock)) # read one line of input and \n, remove \n
ans = parse(Float64, msg)
println("answer is $ans")
close(sock)