I have followed the editableTreeView example provided with Qt and I'm having an interesting problem. Top level items can be added correctly but if I am to give one of them a child, its a pointer to the first top level item.
My code for the QAbstractItemModel is below.
#include "ModelItemNeural.h"
ModelItemNeural::ModelItemNeural(QObject *parent)
: QAbstractItemModel(parent)
{
counta = 0;
rootNode = new NeuralNode();
addNeuralNode(NeuralNode::NEURAL_NETWORK, 0, 0);
}
QModelIndex ModelItemNeural::index(int row, int column, const QModelIndex &parent) const
{
// Out of bounds and null rootNode check.
// if (rootNode == 0 || row < 0 || column < 0)
// {
// return QModelIndex();
// }
if (parent.isValid() && parent.column() != 0)
{
return QModelIndex();
}
NeuralNode* parentNode = nodeFromIndex(parent);
NeuralNode* childNode = parentNode->getInputs().value(row);
if (childNode == 0)
{
return QModelIndex();
}
return createIndex(row, column, childNode);
}
QModelIndex ModelItemNeural::parent(const QModelIndex &child) const
{
NeuralNode* node = nodeFromIndex(child);
if (node == 0)
{
return QModelIndex();
}
NeuralNode* parentNode = node->getParent();
if (parentNode == 0)
{
return QModelIndex();
}
NeuralNode* grandParentNode = parentNode->getParent();
if (grandParentNode == 0)
{
return QModelIndex();
}
int row = grandParentNode->getInputs().indexOf(parentNode);
return createIndex(row, 0, parentNode);
}
QVariant ModelItemNeural::data(const QModelIndex &index, int role) const
{
if (index.isValid() == false)
{
return QVariant();
}
if (role != Qt::DisplayRole)
{
return QVariant();
}
NeuralNode* node = nodeFromIndex(index);
if (node == 0)
{
return QVariant();
}
switch (index.column())
{
case 0:
{
// Stripping the name of the NeuralNode type.
QString name = typeid(node).name();
int index = name.indexOf(" ");
if (index >= 0)
{
name = name.remove(0, index + 1);
}
//return "Test";
return node->getId();
return name;
}
case 1:
{
return node->getWeight();
}
}
return QVariant();
}
QVariant ModelItemNeural::headerData(int section, Qt::Orientation orientation, int role) const
{
if (orientation == Qt::Horizontal && role == Qt::DisplayRole)
{
switch (section)
{
case 0:
{
return "Node";
}
case 1:
{
return "Weight";
}
}
}
return QVariant();
}
int ModelItemNeural::rowCount(const QModelIndex &parent) const
{
NeuralNode *parentItem = nodeFromIndex(parent);
return parentItem->childCount();
}
int ModelItemNeural::columnCount(const QModelIndex &parent) const
{
return rootNode->columnCount();
}
NeuralNode * ModelItemNeural::nodeFromIndex(const QModelIndex &index) const
{
if (index.isValid() == true)
{
return static_cast<NeuralNode *>(index.internalPointer());
}
else
{
return rootNode;
}
}
void ModelItemNeural::setRootNode(NeuralNode *rootNode)
{
delete this->rootNode;
this->rootNode = rootNode;
reset();
}
Qt::ItemFlags ModelItemNeural::flags(const QModelIndex &index) const
{
if (!index.isValid())
{
return 0;
}
return Qt::ItemIsEnabled | Qt::ItemIsSelectable;
}
bool ModelItemNeural::insertColumns(int position, int columns, const QModelIndex &parent)
{
bool success;
beginInsertColumns(parent, position, position + columns - 1);
success = rootNode->insertColumns(position, columns);
endInsertColumns();
return success;
}
bool ModelItemNeural::removeColumns(int position, int columns, const QModelIndex &parent)
{
bool success;
beginRemoveColumns(parent, position, position + columns - 1);
success = rootNode->removeColumns(position, columns);
endRemoveColumns();
if (rootNode->columnCount() == 0)
{
removeRows(0, rowCount());
}
return success;
}
bool ModelItemNeural::insertRows(int position, int rows, const QModelIndex &parent)
{
NeuralNode *parentItem = nodeFromIndex(parent);
counta++;
bool success;
beginInsertRows(parent, position, position + rows - 1);
switch (addedNode)
{
case NeuralNode::NEURALNODE:
{
default:
break;
}
case NeuralNode::NEURON:
{
success = parentItem->insertChildren(position, rows, new Neuron(NeuralNode::NEURON, counta + 100, counta));
break;
}
case NeuralNode::NEURAL_NETWORK:
{
success = parentItem->insertChildren(position, rows, new NeuralNetwork());
break;
}
case NeuralNode::SENSOR_INT:
{
success = parentItem->insertChildren(position, rows, new SensorInt());
break;
}
case NeuralNode::SENSOR_DOUBLE:
{
success = parentItem->insertChildren(position, rows, new SensorDouble());
break;
}
}
endInsertRows();
return success;
}
bool ModelItemNeural::removeRows(int position, int rows, const QModelIndex &parent)
{
NeuralNode *parentItem = nodeFromIndex(parent);
bool success = true;
beginRemoveRows(parent, position, position + rows - 1);
success = parentItem->removeChildren(position, rows);
endRemoveRows();
return success;
}
void ModelItemNeural::addNeuralNode(const NeuralNode::NeuralType& type, int position, int columns, const QModelIndex &parent)
{
addedNode = type;
if (columnCount(parent) == 0)
{
if (insertColumn(0, parent) == false)
{
return;
}
}
if (insertRow(0, parent) == false)
{
return;
}
//insertRows(position, columns, parent);
}
void ModelItemNeural::removeNeuralNode(const NeuralNode::NeuralType& type, int position, int columns, const QModelIndex &parent)
{
}
The code for the NeuralNode (items for the tree) is shown below
#include "NeuralNode.h"
NeuralNode::NeuralNode(NeuralNode *parent)
: id(0), type(NeuralNode::NEURALNODE), weight(0), parent(parent)
{
}
NeuralNode::NeuralNode(const NeuralType &type, NeuralNode *parent)
: id(id), type(type), weight(0), parent(parent)
{
}
NeuralNode::NeuralNode(const NeuralType &type, const int &id, NeuralNode *parent)
: id(id), type(type), weight(weight), parent(parent)
{
}
NeuralNode::NeuralNode(const NeuralType &type, const int &id, const double &weight, NeuralNode *parent)
: id(id), type(type), weight(weight), parent(parent)
{
}
bool NeuralNode::operator ==(const NeuralNode &node) const
{
if (this->id != node.id) // The id of this Neuron.
{
return false;
}
else if (weight != node.weight) // The weight of this Neuron.
{
return false;
}
else if (inputs != node.inputs) // The inputs to this NeuralNode.
{
return false;
}
else if (parent != node.parent) // The parent of the NeuralNode.
{
return false;
}
else
{
return true;
}
}
NeuralNode * NeuralNode::getParent() const
{
return parent;
}
void NeuralNode::setParent(NeuralNode *parent)
{
this->parent = parent;
}
QList<NeuralNode*> NeuralNode::getInputs() const
{
return inputs;
}
void NeuralNode::setInputs(const QList<NeuralNode*> &inputs)
{
this->inputs = inputs;
}
NeuralNode * NeuralNode::child(int number)
{
return inputs.value(number);
}
int NeuralNode::childCount() const
{
return inputs.count();
}
int NeuralNode::columnCount() const
{
return 2;
}
bool NeuralNode::insertChildren(int position, int count, NeuralNode* node)
{
if (position < 0 || position > inputs.length())
{
return false;
}
for (int row = 0; row < count; ++row)
{
inputs.insert(position, node);
}
return true;
}
bool NeuralNode::removeChildren(int position, int count)
{
if (position < 0 || position + count > inputs.length())
{
return false;
}
for (int row = 0; row < count; ++row)
{
delete inputs.takeAt(position);
}
return true;
}
int NeuralNode::childNumber() const
{
return inputs.length();
}
bool NeuralNode::insertColumns(int position, int columns)
{
if (position < 0)
{
return false;
}
for (int a = 0; a < inputs.length(); ++a)
{
inputs.at(a)->insertColumns(position, columns);
}
return true;
}
bool NeuralNode::removeColumns(int position, int columns)
{
if (position < 0)
{
return false;
}
for (int a = 0; inputs.length(); ++a)
{
inputs.at(a)->removeColumns(position, columns);
}
return true;
}
Here is what i've noticed.
I smell a problem with a pointer somewhere but I can't find it. Any help will be greatly appreciated.
Jec
Edit: Here is a crude graphic of the problem
Currently:
Root->A
B
C->A
What I Want:
Root->A
B
C->D
Where A, B, C and D are unique NeuralNodes. I should have no duplicates in the tree.
Thanks again.
it turns out of I forgot to link the children to their parents. Without a valid parent() the top level nodes are always added.