Env: Spark 2.4.0; Scala
I have created DF from CSV that has with 144 columns. Is there anyway to change all columns except one into row?
Table A
|dt |AA|BB|CC|
|----|--|--|--|
|1012|10|12|13|
|1013|13|14|15|
|1014|14|18|30|
Table B (After transform Table A)
|dt |Head|Val|
|----|----|---
|1012|AA |12|
|1013|AA |13|
|1014|AA |14|
|1012|BB |12|
|1013|BB |14|
|1014|BB |18|
|1012|CC |13|
|1013|CC |15|
|1014|CC |30|
I need transpose/ UnPivot table A to Table B. Please note, Table A has 144 columns. I thought built-in function stack(n, expr1, ..., exprk) but I don't know how to pass so many columns automatically.
Appreciating your time and effort to help.
You can create the parameter list for stack dynamically using Scala string operations:
val dfA = Seq((1012, 10, 12, 13), (1013, 13, 14, 15), (1014, 14, 18, 30)).toDF("dt", "AA", "BB", "CC")
val columns = dfA.columns.filter(!_.equalsIgnoreCase("dt"))
var cmd = s"stack(${columns.length},"
for( col <- columns) cmd += s"'$col',$col,"
cmd = cmd.dropRight(1) + ")"
val dfB = dfA.selectExpr("dt", cmd)
.withColumnRenamed("col0", "Head")
.withColumnRenamed("col1", "Val")
Result:
+----+----+---+
| dt|Head|Val|
+----+----+---+
|1012| AA| 10|
|1012| BB| 12|
|1012| CC| 13|
|1013| AA| 13|
|1013| BB| 14|
|1013| CC| 15|
|1014| AA| 14|
|1014| BB| 18|
|1014| CC| 30|
+----+----+---+