I have this function to convert string to slice of bytes without copying
func StringToByteUnsafe(s string) []byte {
strh := (*reflect.StringHeader)(unsafe.Pointer(&s))
var sh reflect.SliceHeader
sh.Data = strh.Data
sh.Len = strh.Len
sh.Cap = strh.Len
return *(*[]byte)(unsafe.Pointer(&sh))
}
That works fine, but with very specific setup gives very strange behavior:
The setup is here: https://github.com/leviska/go-unsafe-gc/blob/main/pkg/pkg_test.go
What happens:
And I have this output on my linux mint laptop with go 1.16:
go test ./pkg -v -count=1
=== RUN TestSomething
0xc000046720 123 0xc000046720 123
0xc000076f20 123 0xc000046721 z
--- PASS: TestSomething (0.84s)
PASS
ok github.com/leviska/go-unsafe-gc/pkg 0.847s
So, the first slice magically changes its address, while the second isn't
If we remove the goroutine with runtime.GC()
(and may be play with the code a little bit), we can get the both pointers to change the value (to the same one).
If we change the unsafe cast to just []byte()
everything works without changing the addresses. Also, if we change it to the unsafe cast from here https://stackoverflow.com/a/66218124/5516391 everything works the same.
func StringToByteUnsafe(str string) []byte { // this works fine
var buf = *(*[]byte)(unsafe.Pointer(&str))
(*reflect.SliceHeader)(unsafe.Pointer(&buf)).Cap = len(str)
return buf
}
I run it with GOGC=off
and got the same result. I run it with -race
and got no errors.
If you run this as main package with main function, it seems to work correctly. Also if you remove the Convert
function. My guess is that compiler optimizes stuff in this cases.
So, I have several questions about this:
Or is this just a compiler bug?
A copy of the full code from github, you need to put it in some package and run as test:
import (
"fmt"
"reflect"
"sync"
"testing"
"unsafe"
)
func StringToByteUnsafe(s string) []byte {
strh := (*reflect.StringHeader)(unsafe.Pointer(&s))
var sh reflect.SliceHeader
sh.Data = strh.Data
sh.Len = strh.Len
sh.Cap = strh.Len
return *(*[]byte)(unsafe.Pointer(&sh))
}
func Convert(s []byte) []byte {
return StringToByteUnsafe(string(s))
}
type T struct {
S []byte
}
func Copy(s []byte) T {
return T{S: s}
}
func Mid(a []byte, b []byte) []byte {
fmt.Printf("%p %s %p %s\n", a, a, b, b)
wg := sync.WaitGroup{}
wg.Add(1)
go func() {
b = b[1:2]
wg.Done()
}()
wg.Wait()
fmt.Printf("%p %s %p %s\n", a, a, b, b)
return b
}
func TestSomething(t *testing.T) {
str := "123"
a := Convert([]byte(str))
b := Copy(a)
Mid(a, b.S)
}
Answer from the github issue https://github.com/golang/go/issues/47247
The backing store of a is allocated on stack, because it does not escape. And goroutine stacks can move dynamically. b, on the other hand, escapes to heap, because it is passed to another goroutine. In general, we don't assume the address of an object don't change.
This works as intended.
And my version is incorrect because
it uses reflect.SliceHeader as plain struct. You can run go vet on it, and go vet will warn you.`