I have a function that creates a ratio. It is defined as
def create_ratio(data,num,den):
if data[num].isnull():
ratio = -9997
if data[den].isnull():
ratio = -9998
if data[num].isnull() & data[den].isnull():
ratio = -9999
else:
ratio = data[num]/data[den]
return ratio
I have pandas dataframe (df_credit) which includes credit card balance (cc_bal) and limit (cc_limit) and I want to calculate credit card utilization which is balance over limit
df_credit['cc_util'] = create_ratio(df_credit,'cc_bal','cc_limit')
I get the following error:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-66-d53809a7690d> in <module>
----> 1 data['ratio_cc_util'] = create_ratio(data,'open_credit_card_credit_limit_nomiss','open_credit_card_credit_limit_nomiss')
2 data['ratio_cc_util'].hist()
<ipython-input-65-99bc55b184ed> in create_ratio(data, num, den)
1 def create_ratio(data,num,den):
----> 2 if data[num].isnull():
3 ratio = -9997
4 if data[den].isnull():
5 ratio = -9998
/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py in __nonzero__(self)
1441 def __nonzero__(self):
1442 raise ValueError(
-> 1443 f"The truth value of a {type(self).__name__} is ambiguous. "
1444 "Use a.empty, a.bool(), a.item(), a.any() or a.all()."
1445 )
ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().
What is the solution to this error? Thanks.
np.select()
df = pd.DataFrame({
"cc_bal": np.random.uniform(200, 1000, 200),
"cc_limit": np.random.uniform(800, 1200, 200),})
df.loc[np.unique(np.random.choice(range(len(df)), 30)), "cc_bal"] = None
df.loc[np.unique(np.random.choice(range(len(df)), 30)), "cc_limit"] = None
def create_ratio(df, num, den):
return np.select(
[
df[num].isnull() & df[den].isnull(),
df[num].isnull(),
df[den].isnull(),
],
[-9999, -9997, -9998],
df[num] / df[den],
)
df["ratio"] = create_ratio(df, "cc_bal", "cc_limit")
df
cc_bal | cc_limit | ratio | |
---|---|---|---|
0 | 372.633 | 981.996 | 0.379465 |
1 | 845.541 | 1133.69 | 0.745831 |
2 | 449.406 | 975.903 | 0.460503 |
3 | 209.827 | 922.829 | 0.227374 |
4 | 237.347 | 936.654 | 0.253398 |
5 | 351.154 | nan | -9998 |
6 | nan | 873.671 | -9997 |
7 | 803.396 | 861.791 | 0.93224 |
8 | 591.136 | 807.176 | 0.732352 |
9 | 675.397 | 847.059 | 0.797344 |