I have a text file (input.txt) with 2 columns of data which is in scientific format as shown.
input.txt file contents:
4.6277245181485196e-02 -3.478992280123e-02
5.147225314664928553e-02 -3.626645537995224627e-02
5.719622597261836416e-02 -3.778369677696073736e-02
6.351385032440140521e-02 -3.9348512512335400e-02
7.049988917103996999e-02 -4.096034949794334634e-02
7.822948857937785105e-02 -4.261684461302106541e-02
8.67649433797989394455e-02 -4.77e-02
9.614380281036348508e-02 -4.604114963738591831e-02
1.063651118650106309e-01 -4.777947266421164740e-02
1.173824105396738815e-01 -4.950717696170207904e-02
1.291006932795119577e-01 -5.119743181445588626e-02
I used below code to read the data as a DataFrame.
import pandas as pd
from tabulate import tabulate
df = pd.read_csv('input.txt',delim_whitespace=True,engine='python',header=None,skip_blank_lines=True)
f=open('output.txt','w')
f.write(tabulate(df.values,tablefmt="plain"))
f.close()
But the data is not getting read in scientific format. I'm writing the same data to another outfile file using tabulate (to look evenly spaced as a table). And, it is not in scientific format and also truncating the digits as shown.
output.txt file contents:
0.0462772 -0.0347899
0.0514723 -0.0362665
0.0571962 -0.0377837
0.0635139 -0.0393485
0.0704999 -0.0409603
0.0782295 -0.0426168
0.0867649 -0.0477
0.0961438 -0.0460411
0.106365 -0.0477795
0.117382 -0.0495072
0.129101 -0.0511974
I need the data to be read as-is, i.e. scientific format in this case and output to another file using tabulate. What needs to modify in the above code?
When reading the CSV specify dtype=str
:
df = pd.read_csv("input.txt", sep=r"\s+", engine="python", dtype=str, header=None)
print(tabulate(df.values, tablefmt="plain", disable_numparse=True))
Prints:
4.6277245181485196e-02 -3.478992280123e-02
5.147225314664928553e-02 -3.626645537995224627e-02
5.719622597261836416e-02 -3.778369677696073736e-02
6.351385032440140521e-02 -3.9348512512335400e-02
7.049988917103996999e-02 -4.096034949794334634e-02
7.822948857937785105e-02 -4.261684461302106541e-02
8.67649433797989394455e-02 -4.77e-02
9.614380281036348508e-02 -4.604114963738591831e-02
1.063651118650106309e-01 -4.777947266421164740e-02
1.173824105396738815e-01 -4.950717696170207904e-02
1.291006932795119577e-01 -5.119743181445588626e-02