Search code examples
pythonscipygaussianleast-squaresscipy-optimize

Least Square fit for Gaussian in Python


I have tried to implement a Gaussian fit in Python with the given data. However, I am unable to obtain the desired fit. Any suggestions would help.

import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
from scipy.optimize import curve_fit
from scipy import asarray as ar, exp

xData=ar([-7.66E-06,-7.60E-06,-7.53E-06,-7.46E-06,-7.40E-06,-7.33E-06,-7.26E-06,-7.19E-06,-7.13E-06,-7.06E-06,-6.99E-06,
-6.93E-06,-6.86E-06,-6.79E-06,-6.73E-06,-6.66E-06,-6.59E-06,-6.52E-06,-6.46E-06,-6.39E-06,-6.32E-06,-6.26E-06,-6.19E-06,
-6.12E-06,-6.06E-06,-5.99E-06,-5.92E-06,-5.85E-06,-5.79E-06,-5.72E-06])
yData=ar([17763,2853,3694,4203,4614,4984,5080,7038,6905,8729,11687,13339,14667,16175,15953,15342,14340,15707,13001,10982,8867,6827,5262,4760,3869,3232,2835,2746,2552,2576])
#plot the data points
plt.plot(xData,yData,'bo',label='experimental_data')
plt.show()
#define the function we want to fit the plot into
# Define the Gaussian function
n = len(xData)
mean = sum(xData*yData)/n
sigma = np.sqrt(sum(yData*(xData-mean)**2)/n)
def Gauss(x,I0,x0,sigma,Background):
    return I0*exp(-(x-x0)**2/(2*sigma**2))+Background

popt,pcov = curve_fit(Gauss,xData,yData,p0=[1,mean,sigma, 0.0])
print(popt)
plt.plot(xData,yData,'b+:',label='data')
plt.plot(xData,Gauss(xData,*popt),'ro:',label='fit')
plt.legend()
plt.title('Gaussian_Fit')
plt.xlabel('x-axis')
plt.ylabel('PL Intensity')
plt.show()

enter image description here


Solution

  • When computing mean and sigma, divide by sum(yData), not n.

    mean = sum(xData*yData)/sum(yData)
    sigma = np.sqrt(sum(yData*(xData-mean)**2)/sum(yData))
    

    enter image description here

    The reason is that, say for mean, you need to compute the average of xData weighed by yData. For this, you need to normalize yData to have sum 1, i.e., you need to multiply xData with yData / sum(yData) and take the sum.