I would like to assign a variable with a custom factor from an ANOVA model to the emmeans() statement. Here I use the oranges dataset from R to make the code reproducible. This is my model and how I would usually calculate the emmmeans of the factor store:
library(emmeans)
oranges$store<-as.factor(oranges$store)
model <- lm (sales1 ~ 1 + price1 + store ,data=oranges)
means<-emmeans(model, pairwise ~ store, adjust="tukey")
Now I would like to assign a variable (lsmeanfact) defining the factor for which the lsmeans are calculated.
lsmeanfact<-"store"
However, when I want to evaluate this variable in the emmeans() function it returns an error, it basically does not find the variable lsmeanfact, so it does not evaluate this variable.
means<-emmeans(model, pairwise ~ eval(parse(lsmeanfact)), adjust="tukey")
Error in emmeans(model, pairwise ~ eval(parse(lsmeanfact)), adjust = "tukey") :
No variable named lsmeanfact in the reference grid
How should I change my code to be able to evaluate the variable lsmeanfact so that the lsmeans for "plantcode" are correctly calculated?
You can make use of reformulate
function.
library(emmeans)
lsmeanfact<-"store"
means <- emmeans(model, reformulate(lsmeanfact, 'pairwise'), adjust="tukey")
Or construct a formula with formula
/as.formula
.
means <- emmeans(model, formula(paste('pairwise', lsmeanfact, sep = '~')), adjust="tukey")
Here both reformulate(lsmeanfact, 'pairwise')
and formula(paste('pairwise', lsmeanfact, sep = '~'))
return pairwise ~ store
.