I struggle a bit with missing values in a Date column.
In my pre-processing pipeline (recipe
-object) I used the step_impute_knn
function to fill missing values in all my Date columns. Unfortunately I got the following error:
Assigned data pred_vals must be compatible with existing data.? Error occurred for column avg_begin_first_contract .x Can't convert double to date
Here is a reprex
for a version where I impute values in multiple columns, including a Date
column. It did not matter for me, if I imputed values only to the Date
column. The result was the same. Below there is a reprex
, which does not through an error, because no Date
column is used.
Has someone had this issue before?
library(tidyverse)
library(tidymodels)
iris <- iris %>%
mutate(Plucked = sample(seq(as.Date("1999/01/01"), as.Date("2000/01/01"),
by = "day"
), size = 150))
iris[45, 2] <- as.numeric(NA)
iris[37, 3] <- as.numeric(NA)
iris[78, 4] <- as.numeric(NA)
iris[9, 5] <- as.numeric(NA)
iris[15, 6] <- as.factor(NA)
set.seed(456)
iris_split <- iris %>%
initial_split(strata = Sepal.Length)
iris_training <- training(iris_split)
iris_testing <- testing(iris_split)
iris_rf_model <- rand_forest(
mtry = 10,
min_n = 10,
trees = 500
) %>%
set_engine("ranger") %>%
set_mode("regression")
base_rec <- recipe(Sepal.Length ~ .,
data = iris_training
) %>%
step_impute_knn(Sepal.Width, Petal.Length, Petal.Width, Species, Plucked) %>%
step_date(Plucked) %>%
step_dummy(Species)
iris_workflow <- workflow() %>%
add_model(iris_rf_model) %>%
add_recipe(base_rec)
iris_rf_wkfl_fit <- iris_workflow %>%
last_fit(iris_split)
#> x train/test split: preprocessor 1/1: Error: Assigned data `pred_vals` must be compatible wi...
#> Warning: All models failed. See the `.notes` column.
Created on 2021-06-15 by the reprex package (v2.0.0)
Here is the reprex, which does not through an error:
library(tidyverse)
library(tidymodels)
iris[45, 2] <- as.numeric(NA)
iris[37 ,3] <- as.numeric(NA)
iris[78, 4] <- as.numeric(NA)
iris[9, 5] <- as.numeric(NA)
set.seed(123)
iris_split <- iris %>%
initial_split(strata = Sepal.Length)
iris_training <- training(iris_split)
iris_testing <- testing(iris_split)
iris_rf_model <- rand_forest(
mtry = 5,
min_n = 5,
trees = 500) %>%
set_engine("ranger") %>%
set_mode("regression")
base_rec <- recipe(Sepal.Length ~ .,
data = iris_training) %>%
step_impute_knn(Sepal.Width, Petal.Length, Petal.Width, Species) %>%
step_dummy(Species)
iris_workflow <- workflow() %>%
add_model(iris_rf_model) %>%
add_recipe(base_rec)
iris_rf_wkfl_fit <- iris_workflow %>%
last_fit(split = iris_split)
Created on 2021-06-15 by the reprex package (v2.0.0)
Thanks in advance! M.
I guess I found an answer and want to share it with you. The key was to turn the Date into a numeric value. Then the imputation was easy. Here is a reprex
.
library(tidyverse)
library(tidymodels)
iris <- iris %>%
mutate(Plucked = sample(seq(as.Date("1999/01/01"), as.Date("2000/01/01"),
by = "day"
), size = 150))
iris[45, 2] <- as.numeric(NA)
iris[37, 3] <- as.numeric(NA)
iris[78, 4] <- as.numeric(NA)
iris[9, 5] <- as.numeric(NA)
iris[15, 6] <- as.factor(NA)
set.seed(456)
iris_split <- iris %>%
initial_split(strata = Sepal.Length)
iris_training <- training(iris_split)
iris_testing <- testing(iris_split)
iris_rf_model <- rand_forest(
mtry = 10,
min_n = 10,
trees = 500
) %>%
set_engine("ranger") %>%
set_mode("regression")
base_rec <- recipe(Sepal.Length ~ .,
data = iris_training
) %>%
step_mutate_at(
where(lubridate::is.Date),
fn = ~ as.numeric(lubridate::ymd(.x))
) %>%
step_impute_bag(c("Plucked")) %>%
step_impute_knn(Sepal.Width, Petal.Length, Petal.Width, Species) %>%
step_dummy(Species)
iris_workflow <- workflow() %>%
add_model(iris_rf_model) %>%
add_recipe(base_rec)
iris_rf_wkfl_fit <- iris_workflow %>%
last_fit(iris_split)
#> ! train/test split: preprocessor 1/1, model 1/1: 10 columns were requested but there were 6 ...
Created on 2021-06-29 by the reprex package (v2.0.0)
If you want to revert from numerics back to Dates before the fitting, you can do so by adding the following line to your code:
step_mutate_at(c("Plucked"), fn = ~ as.Date(.x, origin = "1970-01-01 UTC"))
Thanks again, M.