The SQDIFF is defined as openCV definition. (I believe they omit channels)
Which in junior numpy Python should be
A = np.arange(27, dtype=np.float32)
A = A.reshape(3,3,3) # The "image"
B = np.ones([2, 2, 3], dtype=np.float32) # window
rw, rh = A.shape[0] - B.shape[0] + 1, A.shape[1] - B.shape[1] + 1 # End result size
result = np.zeros([rw, rh])
for i in range(rw):
for j in range(rh):
w = A[i:i + B.shape[0], j:j + B.shape[1]]
res = B - w
result[i, j] = np.sum(
res ** 2
)
cv_result = cv.matchTemplate(A, B, cv.TM_SQDIFF) # this result is the same as the simple for loops
assert np.allclose(cv_result, result)
This is comparatively slow solution. I have read about sliding_window_view
but cannot get it correct.
# This will fail with these large arrays but is ok for smaller ones
A = np.random.rand(1028, 1232, 3).astype(np.float32)
B = np.random.rand(248, 249, 3).astype(np.float32)
locations = np.lib.stride_tricks.sliding_window_view(A, B.shape)
sqdiff = np.sum((B - locations) ** 2, axis=(-1,-2, -3, -4)) # This will fail with normal sized images
will fail with MemoryError
even if the result easily fits to memory. How can I produce similar results to the cv2.matchTemplate
function with this faster way?
As a last resort, you may perform the computation in tiles, instead of computing "all at once".
np.lib.stride_tricks.sliding_window_view
returns a view of the data, so it doesn't consume a lot of RAM.
The expression B - locations
can't use a view, and requires the RAM for storing an array with shape (781, 984, 1, 248, 249, 3) of float elements.
The total RAM for storing B - locations
is 781*984*1*248*249*3*4
= 569,479,908,096 bytes.
For avoiding the need for storing B - locations
at the RAM at once, we may compute sqdiff
in tiles, when "tile" computation requires less RAM.
A simple tiles division is using every row as a tile - loop over the rows of sqdiff
, and compute the output row by row.
Example:
sqdiff = np.zeros((locations.shape[0], locations.shape[1]), np.float32) # Allocate an array for storing the result.
# Compute sqdiff row by row instead of computing all at once.
for i in range(sqdiff.shape[0]):
sqdiff[i, :] = np.sum((B - locations[i, :, :, :, :, :]) ** 2, axis=(-1, -2, -3, -4))
Executable code sample:
import numpy as np
import cv2
A = np.random.rand(1028, 1232, 3).astype(np.float32)
B = np.random.rand(248, 249, 3).astype(np.float32)
locations = np.lib.stride_tricks.sliding_window_view(A, B.shape)
cv_result = cv2.matchTemplate(A, B, cv2.TM_SQDIFF) # this result is the same as the simple for loops
#sqdiff = np.sum((B - locations) ** 2, axis=(-1, -2, -3, -4)) # This will fail with normal sized images
sqdiff = np.zeros((locations.shape[0], locations.shape[1]), np.float32) # Allocate an array for storing the result.
# Compute sqdiff row by row instead of computing all at once.
for i in range(sqdiff.shape[0]):
sqdiff[i, :] = np.sum((B - locations[i, :, :, :, :, :]) ** 2, axis=(-1, -2, -3, -4))
assert np.allclose(cv_result, sqdiff)
I know the solution is a bit disappointing... But it is the only generic solution I could find.