I have a function input_preprocess
that I am using in the data pipeline:
def input_preprocess(image, label):
if label == 1:
return tf.zeros(NUM_CLASSES)
else:
label = tf.one_hot(label, NUM_CLASSES)
return image, label
The problem is that whatever tf.one_hot
returns is a sequence
but what tf.zeros
returns is not.
I get the following error:
The two structures don't have the same nested structure.
First structure: type=Tensor str=Tensor("cond/zeros_like:0", shape=(28,), dtype=float32)
Second structure: type=tuple str=(<tf.Tensor 'args_0:0' shape=(224, 224, 3) dtype=float32>, <tf.Tensor 'cond/one_hot:0' shape=(28,) dtype=float32>)
More specifically: Substructure "type=tuple str=(<tf.Tensor 'args_0:0' shape=(224, 224, 3) dtype=float32>, <tf.Tensor 'cond/one_hot:0' shape=(28,) dtype=float32>)" is a sequence, while substructure "type=Tensor str=Tensor("cond/zeros_like:0", shape=(28,), dtype=float32)" is not
Entire first structure:
.
Entire second structure:
(., .)
How can I manually construct something that could stand in for what tf.one_hot
returns?
tf.one_hot
returns an EagerTensor
just like tf.zeros
:
a = tf.one_hot(1,2)
print(type(a))
b = tf.zeros(2)
print(type(b))
# tensorflow.python.framework.ops.EagerTensor
# tensorflow.python.framework.ops.EagerTensor
I think your issue is that your function input_preprocess
returns a single value if label == 1
(first return) and a tuple otherwise (second return).