The input data:
string_1_A, string_2_A, string_3_A, label_A
string_1_B, string_2_B, string_3_B, label_B
...
string_1_Z, string_2_Z, string_3_Z, label_Z
and I would like to use Universal Sentence Encoder (v4) to get an embedding of that string (will be sentences) and then feed it into LSTM to make a prediction about that sequence. I end up with code below:
import tensorflow_hub as hub
import tensorflow as tf
import tensorflow.keras.backend as K
from tensorflow.keras.layers import LSTM
module_url = "../resources/embeddings/use-4"
def get_lstm_model():
embedding_layer = hub.KerasLayer(module_url)
inputs = tf.keras.layers.Input(shape=(3, ), dtype=tf.string)
x = tf.keras.layers.Lambda(lambda y: tf.expand_dims(embedding_layer(tf.squeeze(y)), 1))(inputs)
x = LSTM(128, return_sequences=False)(x)
outputs = tf.keras.layers.Dense(1, activation="sigmoid")(x)
model = tf.keras.Model(inputs=inputs, outputs=outputs)
model.compile("adam", K.binary_crossentropy)
model.summary()
return model
if __name__ == '__main__':
model = get_lstm_model()
print(model.predict([[["a"], ["b"], ["c"]]]))
the problem is that the dimension of input/output of certain layers does not match as I expected (instead of 1 I would expect 3):
input_1 (InputLayer) [(None, 3)] 0
_________________________________________________________________
lambda (Lambda) (None, ***1***, 512) 0
Any suggestion - I think I need to better handle squeezing and unsqueezing.
The simplest solution is to pass each string/sentence separately into the Universal Sentence Encoder. This produces an embedding for each string/sentence of shape 512 that can be concatenated to form a tensor of shape (None, n_sentences, 512).
This is the code of the model:
n_sentences = 50
module_url = "https://tfhub.dev/google/universal-sentence-encoder/4"
def get_lstm_model():
embedding_layer = hub.KerasLayer(module_url, trainable=True)
input = Input(shape=(n_sentences,), dtype=tf.string)
x = [Reshape((1,512))(embedding_layer(input[:, s])) for s in range(n_sentences)]
x = Concatenate(axis=1)(x)
x = LSTM(128, return_sequences=False)(x)
output = Dense(1, activation="sigmoid")(x)
model = Model(inputs=input, outputs=output)
model.compile("adam", "binary_crossentropy")
model.summary()
return model
At inference time:
sentences = [str(i) for i in range(n_sentences)]
X = [sentences] # 1 sample
print(model.predict(X).shape)
X = [sentences, sentences[::-1]] # 2 samples
print(model.predict(X).shape)
Here the running notebook