I have trained a Faster RCNN model on a custom dataset for object detection and want to test it on Videos. I could test the results on images but am stuck on how to do that for a video.
Here is the code for inference on images:
cfg.MODEL.WEIGHTS = os.path.join(cfg.OUTPUT_DIR, "model_final.pth")
cfg.DATASETS.TEST = ("my_dataset_test", )
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.7 # set the testing threshold for this model
predictor = DefaultPredictor(cfg)
test_metadata = MetadataCatalog.get("my_dataset_test")
from detectron2.utils.visualizer import ColorMode
import glob
for imageName in glob.glob('/content/test/*jpg'):
im = cv2.imread(imageName)
outputs = predictor(im)
v = Visualizer(im[:, :, ::-1],
metadata=test_metadata,
scale=0.8
)
out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
cv2_imshow(out.get_image()[:, :, ::-1])
Please somebody let me know how tweak this code to work for detection on videos?
Platform used: Google Colab
Tech Stack:Detectron 2, Pytorch
Check this loop out:
from detectron2.utils.visualizer import ColorMode
import glob
import cv2
from google.colab.patches import cv2_imshow
cap = cv2.VideoCapture('/path/to/video')
while cap.isOpened():
ret, frame = cap.read()
# if frame is read correctly ret is True
if not ret:
break
outputs = predictor(im)
v = Visualizer(im[:, :, ::-1],
metadata=test_metadata,
scale=0.8
)
out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
cv2_imshow(out.get_image()[:, :, ::-1])
if cv2.waitKey(1) == ord('q'):
break
cap.release()
cv2.destroyAllWindows()