I wonder if could be possible to mutate variables inside my recipe taking a list of variables and imputing a fixed value (-12345) when NA is found.
No success so far.
my_list <- c("impute1", "impute2", "impute3")
recipe <-
recipes::recipe(target ~ ., data = data_train) %>%
recipes::step_naomit(everything(), skip = TRUE) %>%
recipes::step_rm(c(v1, v2, id, id2 )) %>%
recipes::step_mutate_at(my_list, if_else(is.na(.), -12345, . ))
Error in step_mutate_at_new(terms = ellipse_check(...), fn = fn, trained = trained, : argument "fn" is missing, with no default
You were on the right track. A couple of notes. to make recipes::step_mutate_at()
work you need 2 things. A selection of variables to be transformed and 1 or more functions to apply to that selection. The functions should be passed to the fn
argument either as a function, named or anonymous, or a named list of functions.
Setting fn = ~if_else(is.na(.), -12345, . )
in step_mutate_at()
should fix your problem, using the ~fun(.)
lambda style. Furthermore i used all_of(my_list)
instead of my_list
to avoid ambiguous selection by using external vectors reference.
Lastly using step_naomit()
removes the observations with missing values during baking which might be undesirable since you are imputing the missing values.
library(recipes)
mtcars1 <- mtcars
mtcars1[1, 1:3] <- NA
my_list <- c("mpg", "cyl", "disp")
recipe <-
recipe(drat ~ ., data = mtcars1) %>%
step_mutate_at(all_of(my_list), fn = ~if_else(is.na(.), -12345, . ))
recipe %>%
prep() %>%
bake(new_data = NULL)
#> # A tibble: 32 x 11
#> mpg cyl disp hp wt qsec vs am gear carb drat
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 -12345 -12345 -12345 110 2.62 16.5 0 1 4 4 3.9
#> 2 21 6 160 110 2.88 17.0 0 1 4 4 3.9
#> 3 22.8 4 108 93 2.32 18.6 1 1 4 1 3.85
#> 4 21.4 6 258 110 3.22 19.4 1 0 3 1 3.08
#> 5 18.7 8 360 175 3.44 17.0 0 0 3 2 3.15
#> 6 18.1 6 225 105 3.46 20.2 1 0 3 1 2.76
#> 7 14.3 8 360 245 3.57 15.8 0 0 3 4 3.21
#> 8 24.4 4 147. 62 3.19 20 1 0 4 2 3.69
#> 9 22.8 4 141. 95 3.15 22.9 1 0 4 2 3.92
#> 10 19.2 6 168. 123 3.44 18.3 1 0 4 4 3.92
#> # … with 22 more rows
Created on 2021-06-21 by the reprex package (v2.0.0)